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CHAPTER 1

INTRODUCTION

The generic gateway project sponsored by AIRMICS

contributes to gateway design approach, formal specification

of communication systems, and modeling and testing of

communication systems with an A! based language. This section

introduces the work performed to generic gateway task of the

Interoperable Global Information System (IGIS) project.

For incompatible networks interconnection, various

gateways have been designed in the last few years. Our work

is different from the traditional gateway design approaches

from several points of view. One of the significant

differences is the independent design on each half gateway.

For example, while the traditional gateway design approaches

seek tight link between gateway halves, the generic gateway

approach seeks independence between them. And the gateway

halves are interconnected by a linking block which is called

a Protocol Negotiation Block (PNB). The PNB resolves the

mismatches between dissimilar subnetworks, and the process of

mismatch resolution is called negotiation.

1L
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Secondly, the formal specification of the proposed

generic gateway have been demonstrated by the formal

specification tool, LOTOS (Formal description techniques

based on the temporal ordering of observational behavior).

There are a few reasons of favoring LOTOS for our generic

gateway specification. First, LOTOS reoresents most

communication system's characteristics fairly well.

Secondly, LOTOS provides an abstracted description without

being bothered by the detailed aspects of the system.

However, LOTOS has some disadvantages. LOTOS is not in a

mature state yet [DIS 88071. Also a compiler for LOTOS is

not available which can be used during test or verification

of the specification. The disadvantages will disappear with

time and development.

Finally the generic gateway will be demonstrated by

verifiable testing with CLIPS. CLIPS was developed by the

Artificial Intelligence Section of the Mission Planning and

Analysis Division at NASA/Johnson Space Center. As a

constraint oriented AI language, CLIPS provides us a

nonprocedural execution environment which is suitable to

analysis of multiprocessing and non-deterministic system

behavior. As an A! tool, CLIPS allows us to demonstrate the

intelligence features which are desirable in the generic

gateway.
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1.1 Background

During the past decade, computer networks have been

evolved due to various demands and purposes. In most cases

they are dissimilar. if they are used independently the

dissimilarity is not a serious problem. Major corporations

have a proliferation of Local Area Networks (LANs) and Wide

Area Networks (WANs). These networks are mostly

incomoatible. During the last few years the necessity of

internetworking has increased dramatically due to the

following reasons:

a). Corporations are decentralized and dissimilar computer

networks exist at each site.

b). Information contained on computers in the corporate

networks must be shared across internetwork environment.

c). Lack of internetwork standard and incompatible networks

have made interconnection of networks a goal for

corporate users.

For the interconnection between incompatible

networks, the following two approaches have been suggested:

a) Protocol convergences which suggest to re-design existing

network protocols to recently standardized protocols, such as

International Standards Organization (ISO) protocols; b)

There are protocol conversions, which convert or translate

network protocols between incompatible networks.
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While the convergence effort gains more popularity, a few

arguments have been aroused by a number of experts [Green

861. As reference claims, the convergence can not be a

satisfactory solution for the following reasons:

a) Standardization is already late and various networks

widely exist and they are quite incompatible each other

to be converged.

b) Network technology is not in a mature status yet, so

complete migration to a standard might cause to limit the

new technology.

c) Different network requirements means that standardization

can not specify all possible network application.

d) Incomplete standard specification for computer networks.

e) User favoration where the corporate user favors one

network's characteristics over another.

f) Incomplete understanding of networking and

internetworking

problems.

Hence the incompatibility problem will be around for

a while. The second approach called, protocol conversion,

will be a necessity until convergence can be reached as a

final stage.

Protocil conversion, which is also referred as a
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protocol translation or mapping, can b, subclassified by

direct conversion and indirect conversion methods. Direct

conversion is one-to-one protocol mapping scheme between two

interconnected network's protocol sets. On the other hand, an

indirect conversion scheme requires conversion of each

network's orotocols to an intermediate protocol. This

intermediate orotocol is referred as a neutral protocol.

Suppose network M and network N need to communicate with each

other and thev are incompatible, then one protocol conversion

is required by the direct conversion, which converts

orotocols between network M and network N. But, the indirect

conversion requires two protocol conversions, one on network

M side from network M protocol to an intermediate network

protocol, and another on network N side from network N

protocol to intermediate network protocol. In many cases the

protocol con'ersion is done by a protocol convertor, called

internet gateway. The gateway is responsible for providing a

logical connection between two dissimilar networks by

converting their network protocols.

Suppose N non-compatible networks are interconnected,

then direct conversion requires N(N-l)/2 types of protocol

convertors. On the other hand indirect conversion only

requires N types of protocol convertors one for each netw&ork.

While the direct protocol conversions have been practiced

widely, The indirect conversions have began to gain more
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attention recently. This is due to the fact that the direct

conversion schemes require a large number of gateways in the

growing internetworking environment. The availability of

internationally acceptable network protocols such as X.25

(CCITT) help the indirect protocol conversion scheme, as

intermediate networks.

Indirect conversion has following limitations:

a) Protocol Overhead - The protocols must be translated

twice, first to neutral protocol and then to target

protocol,

b) Limited convertibility - The portion of protocol which

convertible between network A and network B, might not be

convertible by the limitation of intermediate network

protocol X.

As a solution to these limitations, an alternative

solution is proposed here. This approach is referred to as a

generic gateway approach. The generic gateway has two major

characteristics. First, a subnetwork protocol is converted

to a universal structure (predefined internetwork service

definition). Secondly, any intercommunicating subnetwork's

protocols, which are already converted into universal form,

are negotiated to resolve the mismatches. In this strategy,

each network only requires a single type of internetworking
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units(gaceways) without experiencing significant protocol

conversion overhead. More soecific descriptions of this

approach will be given in the following chapters.

Gateway implementation is always a problem issue.

Whether the protocol conversion is direct or indirect, the

traditional gateway implementation schemes follow the phases.

a) Analyze both network protocol specifications.

b) Find a compatible functions and services.

c) Find an incompatible, but convertible functions and

services.

a) Implement the functions and services which are found in

a) and b).

Our proposed generic gateway has some differences on

design phases from above. These are:

a) Understand the general network services requirement

which are independent to any specific network

b) Formalize the internetwork services based on a)

c) Design and implement the subnetwork independent part

of the gateway

d) Analyzes particular subnetwork protocol which are going

to be interfaced by the generic gateway

e) implement the subnetwork dependent part of gateway
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by steps a) to d).

As a conclusion to this section, we state that the

generic gateway approach is defined as an indirect protocol

conversion between two or more dissimilar subnetworks.

However, their design approach is significantly diverse from

the traditional gateway design approaches as stated above. By

that, we mean that each type of subnetwork only requires to

provide one type of protocol conversion scheme to support

connectability to any other dissimilar networks.

1.2 Scope of Document

This document is structured into the following three

parts:

a) Overview of the Generic Gateway - This part describes the

functional requirements of internet gateways

b) Formal Specification of Generic Gateway by LOTOS - This

part uses an ISO formal protocol specification language to

describe the functional operation of the generic gateway

c) Testing of the Generic Gateway with CLIPS - This part

describes the proposed use of an AI constraint language to

perform verifiable testing of the generic gateway

specification.



CHAPTER 2

INTERNET GATEWAY'S FUNCTIONALITY

Internet gateways, regardless of their application

environment, must perform a variety of functions in order to

provide communication between incompatible networks. These

functions cover protocol processing, performance, and

operational aspects of the gateway. Some of them are as

follows [MAR 87A]:

2.1. Medium Transformation - A gateway must translate

messages between different transmission media, such as LAN RF

broadband or baseband digital signals, and the serial 1822 or

X.25 interfaces of the DDN packet switching nodes. Signaling

schemes to each network must be present in the gateway.

2.2. Media Access Translation - The media access schemes on

the LAN side of the gateway must be present in the gateway.

Media access schemes on LANs, such as CSMA/CD or token

passing 802.4, must be present in the gateway. Access schemes

to the DDN must also be present.

2.3. Address TransLation - Network addressing schemes are

9
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different on each network, so that the gateway must perform

address translation. For example, the IEEE 802.3 LAN uses a

48 bit flat addressing scheme and the DDN uses a 32 bit two-

level addressing scheme. The gateway must recognize internet

addressing schemes when interconnecting multiple networks.

2.4. Protocol Transformation - The network protocols of each

network must be transformed through decapsulation and

encapsulation steps in L part of the gateway. For the DDN,

the Internet Protocol (IP) and the Transmission Control

Protocol (TCP) must encapsulate to a LAN message. The LAN

protocol headers must be stripped before hand-off to the

TCP/IP protocols. in the case of internet environment, a

gateway-to-gateway protocol must be implemented.

2.5. Message Buffering and Flow Control - The gateway must

be able to buffer messages from each network and flow control

the network interfaces when the buffers are full. The flow

control mechanisms buffer sizes are critical to the

performance of the gateway.

2.6. Reliable Connection Management - The gateway must

provide an error free link between two end-users on the

networks by adhering to the error control and re-transmission

mechanisms in the network protocols. The status of the

connection must be made available to the user when error
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conditions arise.

2.7. Fault Detection and Reporting - The gateway must be

able to detect connection status when establishing and

maintaining a connection between two end-users. The gateway

then reports to the users the condition of the links,

gateways, and networks in the connection path, if a problem

should occur.

2.8. Performance Monitoring and Statistics - The gateway

must be able to monitor its performance relative to packet

throughput and network routing statistics. These parameters

can be read locally or remotely from the gateway and used for

internet management.

2.9. Security Control Mechanisms - The gateway must adhere

to internet security control and management procedures. This

might include generation and routing of encryption keys and

cryptographic algorithms.

2.10. Real-Time Response - The gateways must process packet

traffic from the networks in real-time so that user response

times are not compromised. The gateway must accommodate the

differences in network response times. Real-time response is

also important during interactive user sessions. The gateway

must sustain the communication rates of each network.
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2.11. Parallel Processing Architecture - The gateway must

contain parallel processing architecture to sustain the

network transmission speeds. Dedicated protocols and

communication modules must exist to achieve the performance

throughput required by connection to multiple networks. This

is an architecture implementation feature which aids in

achieving real-time response.

2.12. ISDN Interfaces - Gateways must eventually interface

to integrated services digital networks (ISDNs) for data,

voice, and video communications. The gateway must

interconnect to ISDNs and their predecessors.

2.13. Multiple Network Interconnection - Gateways must have

the interfaces and link parts to access multiple

communications systems and networks. Multiple networks

connections through the gateway must be accommodated.

2.14. Multi-Level Security and Key Distribution-

Communications between end-users in some internet systems

will require multi-level security for sensitive information

and the gateway must preserve the data security

characteristics of several networks. The gateway must be

able to adhere to these requirement.
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2.15. Dynamic Network Topology Reconfiguration - Since the

gateways are interconnected to multiple networks it is

feasible to use the gateway to keep network status and give

this information to the network management function for

reconfiguration when nodes and networks fail or are

dest roved.

2.16. Network Reachability - The gateway must determine the

teachability and availability of neighboring networks.

Network status must be exchanged between gateways so that

alternate network hops be taken when a path is down.

2.17. Internet Management and Control - The gateway interacts

with an Internet Management and Control Center to assist in

the daily operation and reliability of the networks. The

gateway performance monitoring function collect performance

data and presents it to the Control Center.



CHAPTER 3

INFORMAL GENERIC GATEWAY SPECIFICATION

3.1 Generic Gateway Structure

The generic gateway structure is composed of three

parts, two subnetwork dependent parts and a subnetwork

independent part. The subnetwork dependent part is

responsible for communication with its subnetwork nodes. The

subnetwork independent part is a generic functional part

which is responsible for the interconnection between two or

more subnetwork dependent parts. The structure of generic

gateway is illustrated in Figure 3.1 and discussed in this

section.

The basic design strategies used for the generic

gateway specification are as follows:

a) Divides the gateway functions into subnetwork dependent

functions(protocol functions), and subnetwork independent

functions (generic functions).

b) Subnetwork dependent part of gateway does not support any

generic functions.

c) Protocol mismatches are solved only by the subnetwork

14
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independent part of the gateway.

d) Subnetwork independent part of gateway does not support

subnetwork protocol functions.

e) The communications between the subnetwork dependent and

independent part are done via service access points(SAPs).

The parts of the generic gateway are described next.

The subnetwork dependent part is decomposed into a Subnetwork

Medium Access Block(SMAB), and a Subnetwork Protocol

Block(SNPB), The SMAB supports the physical and data link

layers protocols of each subnetworks. The SNPB supports the

Network and Transport layer protocol of each subnetwork. The

subnetwork independent part is consists of a Protocol

Negotiation Block(PNB) which binds the two subnetworks and a

Data Base Block(DBB). The Data Base is a shared memory

between subnetwork dependent parts of gateway and the network

independent PNB. The DBB contains the following information:

a) subnetwork characteristics, such as the maximum allowable

packet size, sequencing methods, timeout value.

b) subnetwork statistics such as packet load and throughput

status.

c) The routing information which is used by PNB and the

gateway-to-gateway protocol during connection

establishment phase.
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For the proper gateway operation, a third kind of

module is required. This is the gateway-to-gateway protocol

(GGP) module. Like the data communication protocol

supporting blocks, the GGP module can be subdivided into a

removable GGP(local network GGP, or LGGP) and a fixed

GGP(internet GGP, or IGGP). The functionality of the GGP and

the LGGP and IGGP will be described in section 3.2.3.

Subnet D ata~ath Sbe
I nfo. Path

Figure 3.1 Generic Gateway Structure
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3.2 Subnetwork Dependent Blocks

The subnetwork dependent blocks are the traditional

part of gateway. These parts are responsible for

communication between the subnetworks. Like most half

gateway parts, the subnetwork dependent part supports the

subnetwork protocols. However, the subnetwork independent

part differs from the traditional gateway halves. For

instance, the traditional gateway half converts the protocol

structure and semantics to that of the other side gateway

-alf. But in the generic gateway it converts them into an

intermediate structure and semantics. The intermediate

network structure and semantics are recognizable by the

protocol independent block, called the PNB. The subnetworks

dependent blocks are consist of two parts, a SMAB (subnetwork

medium access block) and a SNPB (subnetwork protocol block).

Details of the SMAB and SNPB are described in the next two

sections.

3.2.1 Subnetwork Medium Access Block(SMAB)

As the name implies, the SMAB is responsible for the

control mechanism to access the subnetwork transmission

mdium. The control mechanism includes the Physical and Data

Link protocol layers. Because the characteristics of

:ransmission medium and media access schemes are diverse "or
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each individual subnetwork, more specific operational

descriptions are out of scope of this document and will not

be described in detail here. Data Link protocols include

token oassing (IEEE 802.4, 802.5) and CSMA/CD (IEEE 802.3).

Physical layer signaling and transmission medium include

coaxial broadband and baseband, TDMA, twisted pair, and fiber

optics.

3.2.2 Subnetwork protocol block (SNPB)

The basic functions of the subnetwork protocols in

the SNPBs follow the basic philoscphy of the OSI reference

model. However, the protocols might differ on syntax and

semantics. As stated previously, the individual subnetwork's

protocol characteristics are varied due to the specific

subnetwork. In this section some important issues of the

subnetwork protocols are discussed.

The first issue to be addressed on the gateway design

is that of protocol conversion between Network layers. If

the gateway provides too much protocol conversion, such as up

to the Application layers, then the complexity of the gateway

could be a performance bottleneck i:i the intern~t. If the

gateway supports too few layers, then each node on the

subnetworks must provide an excessive number of protocol

services. The main issue here is whether the internet
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protocols are centralized or distributed. Centralization

means lower performance and decentralization means complex

individual nodes. For instance, the !SO specifications

recommend the Network layer protocol for intermediate network

nodes, and gateways(ISO 74981. The DDN selects the

Transport protocol, for its gateway protocol level[RFC-74].

Other gateways use Network layer routers and lower layer MAC

bridges as their protocol conversion levels. in the generic

gateway, the transport protocol layer is used for protocol

convers ion.

Another issue is the type of service subnetworks

provide, connectionless or connection-oriented. Enter-

connection of connectionless and connection-oriented

subnetwork requires extensive protocol conversion. The

connection-oriented services must be emulated by the SNPB in

the gateway. The advantages of connectionless and

connection-oriented network approaches are in the flexibility

and reliability respectively. Connectionless internetwork

environment offers versatility, efficiency, flexible

topologies, load sharing, and administrative manageability.

The connection-oriented internetwork environment provides

reliable data transmission, error recovery, congestion

control, and reliable network management. Wide area

networks (WANs) use connection-oriented approach because

tneir error rates are generally higher than a LAN's and
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reliable service is mandatory.

Another important characteristic of subnetwork

protocols is the quality of service on each subnetwork.

Quality of service requires reliable data transport and is an

important feature of subnetwork classification. In this

case, reliability does not necessary mean the Transport

protocol, even though it is confused in many occasions.

Reliability implies error free data transmission between

communicating nodes. In some cases, the quality of service

implies message delay time versus cost, such as a priority

or precedence of services.

From the above discussions, the subnetwork's

characteristics can be summarized as the follows:

a) SNPB provides either Network or Transport level service.

b) SNPB provides either connectionless or connection-oriented

service.

c) SNPB provides either reliable or unreliable data transport

service.

Depending on the application, each subnetwork can

provide more then one type of services on each category. For

example, subnetwork A can provide connectionless and
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connection-oriented services, and multiplex between the two.

3.2.3 Local Gateway to Gateway Protocol Block (LGGP)

An internetwork environment may contain several

networks and gateways. Zn this case, the gateways must

collaborate to find the best path between network nodes. The

gateways on the subnetwork require to exchange the

information. This information includes gateway, link and

node status. The information exchange is provided by a local

gateway-to-gateway protocol(LGGP). The LGGP provides the

following services and functions.

a) Address resolutions on reachable nodes.

b) Routing information exchange.

c) Name service.

d) Network statistic information exchange.

e) Universal time service.

Unlike an autonomous internetwork system the generic

gateway does not expect that interconnected subnetworks to

snare a common gateway protocol, However, each subnetwork is

responsible for providing a gateway protocol locally, thus

the LGGP. For instance, if one of the subnetworks is a part

of DARPA internet, then a few gateway protocols may be

involved. Examples of these are the Gateway-to-Gateway

Protocol (GGP)[RFC 823], Exterior Gateway Protocol (EGP) [RFC

904], Routing >nformation Protocol (RIP) [COM-88]. The
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gateway protocols may be quite complicated and they are

strongly subnetwork dependent. The internal gateway

protocols of an internet will not be discussed in here. More

information can be found in oublished documents and articles

[COM-881.

3.3 Subnetwork Independent blocks

While subnetwork dependent blocks provide the most

protocol functional support on each subnetwork, the

subnetwork independent blocks provide a group of gateway

specific functions. These functions include resolution of

protocol mismatches, address resolution, and routing.

Basically the subnetwork independent blocks are categorized

by the following three functional blocks.

a) DBB (Data Base Block) - which maintains all internetwork

information;

b) GGP(gateway to gateway protocol) - which is responsible to

resolve the routing and addressing problems.

b) PNB (protocol negotiation block) - which resolves most

protocol incompatibilities between dissimilar subnetworks.

These parts of the generic gateway are described in

detail in sections 3.3.1 to 3.3.3 below.

The subnetwork independent blocks must meet the

following requirements:
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a) independence of Subnetwork Protocol - The gateway must be

able to operate with a wide variety of subnetwork

characteristics. An open systems architecture in the

subnetwork indeoendent blocks is required.

b) Completeness - The gateway must provides enough functional

support for the subnetwork functional protocols. This

implies that the gateway must provide functionality which

might be expected by the subnetworks.

c) Functional flexibility - The gateway must be flexible

enough to compensate the differences between two

interconnected subnetworks. When any specific functions are

not provided by one of the subnetworks, the gateway must have

a capability to resolve the mismatches. This is done either

by providing extended functions on the subnetwork which lacks

in the functions or by eliminating the functions during

communication. The former method is preferred.

d) Knowledgeable - The gateway must have enough knowledge to

make the required translation of protocol functions between

the subnetwork protocols. The gateway must be well informed

about each subnetwork's characteristics. This knowledge is

kept in the data base portion of the gateway.
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e) Extendability - The gateway must have a capability to

extend the functional capability when required, without

disturbing current gateway operation. This implies that the

gateway must be designed with the incremental functions.

f) Negotiability - When the subnetwork's functions are

mismatched and they cause the interoperability problems, they

must be negotiated by the gateway to resolve the mismatches.

This is performed by the Protocol Negotiation Block (PNB) in

the gateway.

The generic gateway requirements discussed above are

more idealistic than practical. To archive practicality, the

requirements must be restricted or the internetwork

environment must be limited to bounded network domains. The

limitation on requirements for the generic gateway are as

follows:

a) Subnetworks Limitation - The suite of subnetworks is

limited to the networks which are structurally and

functionally compatible, or softly incompatible networks.

Examples are IEEE 802, X.25, ISO, SNA, TCP/IP, and MAP

networks. The protocol matches for these networks are well

understood.

b) Supported layers limitation - The gateway only provides a
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protocol conversion up to transport layer. The main reason

is that by reducing the number of converted layers, the

complexity of the gateway becomes feasible to implement.

Unlike the Application layer protocols, the lower layer

protocols are well defined and their varieties are reasonably

small.

c) Functional Separation - The generic gateway must be

decomposed, into two parts, subnetwork dependent part and

subnetwork independent part. The subnetwork dependent part

is responsible to handle all subnetwork protocol functions.

The subnetwork independent part provides all protocol

conversions. The quick overview of above three blocks will

be discussed in the following sections.

3.3.1 Data Base

The data base maintains all gateway information which

includes the subnetwork information and the information of

individual connections, the connection status table. Also, it

maintains other information which are required for the

gateway maintenance.

3.3.2 Network Protocol Negotiation Block (PNB)

The PNB is responsible for linking the internetwork

services between two subnetworks. Internetwork services,
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which are requested from one of the gateway's subnetworks,

are converted or negotiated to the other subnetwork's service

structure and semantics. The services are then transported

to the second subnetwork.

The PNB provides the following negotiations:

a) Connection schemes negotiations.

b) Data transport negotiations.

c) Subnetwork parameter negotiations.

More specific negotiation phases will be introduced

on the following sections.

3.3.3 Internet Gateway to Gateway Protocol Block (IGGP)

The gateways require to exchange the network

information to utilize the internetwork resources. In the

section 3.2.3 the intra-subnetwork gateway protocols (LGGPs)

have been discussed. Unfortunately, in the generic gateway,

the two (or more) interconnected subnetworks can not be pre-

defined and the LGGPs can not be predicted to be

interoperable. Hence, the processes which link the

individual LGGPs are required. These processes are called

the internet gateway to gateway protocol (IGGP). The major

function of the IGGP is interconnection of services between

subnetwork LGGPs via standard service access points. The

services include address service, route service, and
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congestion control service. However, the detailed internal

functions of the GGP will not be introduced in this docu-

ment, but only the results of the £GGP and LGGP are assumed

be available during the connection establishment phase on the

PNB. DDN's gateway protocols, EGP (Exterior Gateway

Protocol) and GGP (GGP) of DDN can be considered as LGGPs.
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3.4 Generic Gateway Services

Two groups of services can be expected from the

generic gateway. They are: a) Protocol services which have

been originated by the protocol itself, b) Gateway services

which are dedicated to the gateway. The first group of ser-

vices includes connection establishment and termination, and

data transport services. The second group of services

includes routing, protocol conversion, and protocol negotia-

tions services. The first group of services are common on

all network nodes while the second group of services are only

available on the gateways (or intermediate nodes). The first

group of services should be explicitly accessible by the

network users, but the second group of services, in many

cases, are transparent to most network users.

Because these two groups of services are strongly

related each other, we have chosen not specify the generic

gateway using service definition. Instead, the specification

will be presented by the communication phases, such as a

connection establishment, a data transport, and a connection

termination phase.

3.4.1 Gateway Initialization

Before the gateway involves any internetwork
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services, the fundamental information of each subnetworks

must be collected by the gateway and conformance of the

subnetwork's interoperability should be made. The stage in

which the gateway organizes the information and builds

strategies is called as a gateway initialization phase.

During this phase the gateway performs one of important

negotiations, called static negotiation.

During static negotiation the invariant subnetwork

information will be tested whether the subnetworks can

communicate with each other or not. The result of the static

negotiation could be one of three as follows: 1) Success, the

two subnetworks may communicates each other without degrading

any services, 2) Minor restriction, the two subnetworks may

communicate each other, however some internet communication

services are restricted, and 3) Failure, the

interoperability of the two subnetworks is not attainable.

The following subnetwork information could be used in

the static negotiation phase:

a) Subnetwork protocol type.

b) Subnetwork reliability.

c) Connection and packet delivery times.
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3.4.2 Connection Establishment

The connection establishment phase is one of the most

complicated part of the computer communication protocol.

Several functions should be handled during this phase. The

destination user address and network must be found. A proper

path between source and destination or routing path is

required. And the connection must be acknowledged by the

communication end points or synchronized.

a) Connectionoriented and Connectionless subnetworks - In

general, computer networks are characterized as connec-

tionoriented and connectionless networks. The connection

oriented network maintains a logical link which called as

session, during which communications takes place. This phase

of the communication during the link setup is called the

connection establishment phase. On the other hand, the

connectionless network transports individual messages without

maintaining a logical link between them.

b) Initial Synchronization - One of the major functions of

connection establishment phase is the synchronization between

the source (calling) node and destination (called) node.

This synchronization has two major purposes. First, it makes

sure both end entities (nodes) are ready for the

communication and, second, it negotiates on the communication
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parameters (or functions). For instance, the sequence number

for the initial packets could be exchanged between

communicating entities during the connection establishment

Chase. Logical and physical addresses of source and

destination nodes may be also be exchanged.

c) Number of packets - The number of required packets during

connection establishment phase classifies the connection

establishment phase as handshaking schemes. More specific

handshaking schemes are presented below.

,n the one way handshaking scheme, which requires

only one packet, the connection can be established by a

simple procedure. The calling node sends a connection

request (CR) packet to a called node. Then the calling node

assumes that the connection is completed without verifying

the connection status.

In the two way handshaking scheme, the connection

phase requires two packets one for each direction. The

calling node requests a connection by sending a CR packet to

a called node. Then the called node sends the connection

confirm (CC) packet back to the calling node. The calling

node waits until the CC is received from the called node

before proceeding any further actions, such as an initiation

of data packet transmission. Because the two way handshaking
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requires more packets, it is more complicated and slow.

However, it has a few important advantages. First, of all

the unnecessary data packets transmission can be eliminated

when the destination node is not currently available. More

importantly it can provide a flexible communication

environment. One of the well known example is negotiations

on classes of services between transport layer protocols in

ISO modeled networks.

The two way synchronization does not guarantee that

the communicating nodes are synchronized during connection

establishment phase. Lost CC packets can not be easily

detected by the called node, and the called node could enter

the data transfer phase without knowing the calling node's

status. To achieve synchronization, a third packet is

required which tells whether the calling node actually

receives the CC packet or not. This scheme is called three

way handshaking. The DoD networks are well known example of

this scheme. More information on three handshaking is

contained in referred in (RFC 793].

While subnetworks have quite diverse connection

management schemes, their interconnection by a generic

gateway requires special care. The following strategies are

proposed in the generic gateway:
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a. The subnetwork dependent part of gateway (subnetwork

protocol supporting block) follows the strategy which

have been employed in the local subnetwork.

b. However, the communication between subnetwork dependent

part(SNPB) and independent part(PNB) must be predefined in

universal (connection establishment) strategy.

c. In our generic gateway the PNB expects two-way handshaking

scheme if the subnetwork is connection-oriented network.

A few scenarios of the connection establishment

phases are as the follows:

NOTE: The following acronyms are used in the scenarios:

CR: Connection Request
CC: Connection Confirm
DR: Data Request
SYN: Synchronization
ACK: Acknowledgement
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Scenario 1:

Connection-oriented to Connection-oriented connection
(2 way - 2 way sync.)

(Source) SNPBa PNB SNPBb (Destination)

CR -- >

CR --------->
CR -------->

CR ------ >
< ------- CC

< -------- CC
* Connection Established

< ------- CC
* Connection Established

< ------- CC
* Connection Established

Note: In Scenario 1, the connection between two

connection-oriented subnetworks is established by CR and CC.

As noticed here the connection establishment status is

propagated from the destination to the source node. As a

result, the destination node can send data packets

immediately after it sends the CC. On a positive side, the

expedited packets can be transferred before CC reaches the

source node. On the other hand, this might waste resources by

transmitting the data packets through a path which might no

longer exist.
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Scenario 2:

Connection-oriented to Connection-oriented connection
(2 way - 3 way sync.)

(Source) SNPBa PNB SNPBb (Destination)

CR------
CR -------->

CR -------- >
CR -------- >

< ---- ACK,SYN

< ------- CC
ACK -------- >

* Connection Established
< ---------- CC

* Connection Established
< ...... - CC

* Connection Established

Note: In Scenario 2, the destination (called)

subnetwork requires synchronization using the 3 way

handshaking strategy, while the source (calling) subnetwork

provides a two-way handshaking strategy. By that, the packet

exchange must be adjusted by the gateway. One interesting

point is that the acknowledge will be returned from the SNPB

on the destination side of the gateway, not by the final

(calling) node. Thus, it will produces the same result as

the first scenario, (connection is established from destina-

tion side nodes first).
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Scenario 3:

Connection-oriented to Connectionless connection
(2 way)

(Source) SNPBa P N2 SNPBb (Destination)

CR ---- >
CR -------- >

DR - --- -> DR ------ >
< DR---- ACK

< --------ACK
<--------------------cI< . . . . CC

* Connection Established
- - CC

* Connection Established

Note: In Scenario 3, the connection-oriented

subnetwork initiates a CR to the connectionless subnetwork.

The CR will be sent as a data packet, which has an empty data

field, unless the source contains some data to be sent. Then

the destination node will send the ACK back to the source

node. Finally the source node receives the CC and the

connection is established.

The main argument here is how sequential data packets

can be delivered properly. One solution is, transfer each

packet independently without any concern about the connection

path which have been made during connection establishment

(each sequential packet is treated as a connectionless data

packet). The other solution is, transfer the sequential

packets through the connection which is established during
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the connection establishment phase.

If the data transmission is in half duplex mode (only

one node is allowed to send a stream of packets especially

the one which initiate, the connection), then the first

scheme is sufficient. However if the connection must be

maintained in full duplex mode (communication is allowed in

both directions), the first scheme will confront a serious

problem. THe problem is that each data unit transmission

initiated by a connectionless subnetwork requires a

connection establishment and its termination on the

connection oriented subnetwork.

As a proposed solution to this problem, the

connectionless subnetwork side of the gateway also requires

maintaining a connection reference table which could be

referenced during the data units transport with connection

oriented subnetwork. The connection reference table would be

removed when the disconnection request (DR) has been issued

by the connection-oriented subnetwork or when a time out is

reached on the connectionless subnetwork.
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Scenario 4:

Connectionless to Connection-oriented connection
(2 way)

(Source) SNPBa PNB SNPBb (Destination)

DR ----- >
DR -------->

CR ------- >
CR ------ >

<-------- CC
< ------- Cc

* Connection
Established

ACK
*Connection Established

< ------ ACK

Note: Scenario 4 consist of a connection

establishment phase between connection-oriented and

connectionless subnetworks, and it is the counter direction

of Scenario 3. For communication from a connectionless to a

connection-oriented subnetwork, there are two possible

scenarios. The first treats each data packet as an

independent entity, so that each packet initiates a connec-

tion request, complete data transfer, and terminates the

connection. Because it is simple, it become one of the most

popular methods between connectionless and connection-

oriented network interconnection. However, it will involve

too much overhead by the frequent connection establishments

and terminations during data transports. As an alternative

solution, which is suggested in the Scenario 3, the
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connection table method is proposed here. The first data

packet from the connectionless network can be treated as a

connection request packet. Then the subsequential packets

will be transferred using the connection table. However, the

main problem in this scheme is how and when the connection

should be closed. The simplest solution is to allow

sufficient amount of idle (inactive) connection between

communicating parties in order to terminate the connection.

Alternately, the connection can be terminated by the

disconnection request from the node on the connection-

oriented subnetwork.

c. Protocol Negotiation

The protocol negotiation functions are one of the

most significant aspects of the generic gateway. The various

connection establishment schemes between interconnected

subnetworks noted above can be expressed as a part of the

protocol negotiation functions. In this section other

negotiations which can be performed by the generic gateway

will be discussed.

In general the incompatibility of the dissimilar

networks falls into one of three categories: 1) all incom-

patible protocol functions can be converted; 2) most of

incompatible protocol functions can not be converted; 3) a

few of the incompatible protocol functions can not be
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converted but the others can.

In most cases the incompatibility between networks

fall into class 3, so that the most protocol functions are

commonly found from both networks with minor syntactic or

semantical differences (soft mismatch). However, some of the

functions would not be on both networks (hard mismatch). The

first type of incompatibility can be solved by the gateway,

but the second type of incompatibility can not. Therefore,

whether the protocol conversion is possible or not, mainly

depends on the protocol functions which are not common in the

both subnetworks. This also implies that the possibility of

the protocol conversion (or gateway) depends on the willing-

ness of giving up of the inconvertible functions. In the

generic gateway, the willingness is expressed as a protocol

negotiation.

In our current design the parameter incompatibilities

have been chosen as major negotiation examples. Because they

are fairly easy to approach and identify. Examples of these

parameters will be given bellow. The parameter negotiation

has two phases: 1) during connection request packet(CR)

transfer; 2) during connection confirm(CC) packet transfer.

Suppose a subnetwork A requests a connection to a subnetwork

B by sending a connection request packet. The first

negotiation is taken place when the gateway receives a
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connection request from the calling node, with the

information of each subnetwork's pre-stored parameters and

the parameters which are received as a part of the CR packet.

The negotiation is performed by the Protocol Negotiation

Block (PNB). If the first part of negotiation fails the

connection is terminated by informing the connection denial

reasons. Otherwise, the connection process can be continued.

The second negotiation is performed when the gateway receives

the connection confirm packet from the called node. In both

cases, the PNB has two options: take the negotiated values or

reject the values, and disconnect the connection.

ExamDle:

Connection-oriented to Connection-oriented connection
(2 way - 2 way sync.)

(Source) SNPBa PNB SNPBb (Destination)

CR ----- >
CR ------- >

* first negotiation phase
CR -------- >

CR ------ >
S------- cc

<----------------CC
* Connection Established

* second negotiation phase
< ------- CC

* Connection Established
< ----- -CC

*Connection Established

A few of interested negotiated parameters are as

listed bellow.
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Time Related Parameters Negotiations:

- Max. allowed delay on connection establishment,

- Max. allowed lifetime of a packet,

- Max. allowed delay on subnetworks,

- Max. allowed turn around time,

- Max. allowed inactive connection time.

Qdality of Service Negotiations:

- The trade off between allowed error rate and

throughput.

Packet Size Negotiations:

- Max. allowed Packet size,

- Blocking,

- Segmentation.

Other Functional Negotiations:

- Buffer size,

- Packet sequence number,

- Data transmission handshaking.

3.4.3 Data Transfer

After connection is established between communicating

nodes, the data units can be transferred. This stage of

connection is called the data transfer phase. If the data

transfer is done in an ideal environment (error free envircn-

ment) then the gateway's data transfer phase might be quite

simple. It receives a data unit from one subnetwork then it

sends the data unit to the other subnetwork. Unfortunately,
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the real communication environment is far from the ideal

condition and a lot of unexpected events can happen, such as

lost or duplicated packets. For these reasons, a number of

protocol functions are dedicated to provide the reliable data

transmission.

The reliable subnetwork must provide the following

conditions: 1) the data units created by the data unit

originator (source node) must be delivered to the final

(destination) node; 2) the data units must be delivered in

order and only once. To satisfy the requirement, complex

communication mechanisms are provided in most network

protocols, which detect and recover any errors during data

units transfer such as lost, duplicated, or out of sequenced

data units.

One of the crucial questions which has been asked is

how reliable should the network be. Everybody understands

that a reliable network provides better satisfaction than an

unreliable network. However, higher reliability is not free.

Reliability and throughput performance are contentional

properties in general. Reliable communication requires

complex processes such as retransmission schemes for lost or

corrupted data transmission. So, the answer of the question

must be sought by balancing between performance and reliabi-

lity.
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The reliability of a network, which is referred to as

a quality of service in our gateway design, is a negotiable

property during connection establishment phase. When real

communication is concerned, the negotiation of reliability is

quite complicated due to the various sources affecting

reliability. In this section, we defined a structure to the

notion of reliability for negotiation purposes. We define

two levels of reliability on each category as stated bellow:

a) The subnetwork can be either reliable network or

unreliable network.

b) The subnetwork provides either reliable data transport

protocol or unreliable data transport protocol (virtual

circuits of datagram service).

c) The user expects reliable data transport service or

unreliable data transport service.

The quality of service negotiation can be built as a

set of production rules. For example, the calling user

requests a connection with reliable data transmission then

the negotiation can be represented as bellow:

negotiation rulel:

If ( (MyService is reliable)
and

(MySubnetworkProtocol is reliable) or,
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(MySunbetworkQuality is reliable))
and

(DestSubnetwork Quality is reliable or,
(DestSubnetworkProtocol is reliable))

then
NegotiatedQuality is Reliable transmission;

As long as the protocol negotiation on the quality of service

is done successfully during the connection establishment

phase, the nodes may communicate with each other on the

negotiated auality of service class.

Suppose current application requires reliable data

transmission service, the interconnected networks are not

reliable, and the network protocols provides reliable data

stream service. Then the two interconnected subnetworks can

provide a reliable data uransport service by the reliable

data transport control mechanisms with the protocols on each

subnetwork.

If ( (MyService is reliable)
and

(MySubnetwork _Protocol is reliable) or,
(MySunbetworkQuality isnot reliable))

and
(DestSubnetwork Quality isnot reliable or,

(DestSubnetworkProtocol is reliable))

then
NegotiatedQuality is Reliable transmission;

But, unfortunately the mechanisms on reliable communication

between subnetworks may not compatible each other, for
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instance one subnetwork uses TCP while the other uses TP-4.

The question aroused here is how the two reliability control

mechanisms can be interoperable with each other. When the

interconnected subnetworks are pre-defined, the conversion

between the reliability control mechanism may converted with

each other. Unfortunately, this assumption may not available

in the generic gateway approach. Thus, we propose the

policies as follows:

a) On each side of subnetwork the reliable data stream

control is maintained locally, which is independent to the

other side of subnetwork.

b) The only reliable data packets are expected from the other

side of subnetwork. Such as the other side of network is

guaranteed or assumed that a stream of data packets,

delivered, is error free.

The summary of this section is as the follows:

a) The minimum requirement for the data transport

service will be selected by the quality of service

negotiation during connection establishment ohase. If the

negotiation is completed successfully then data communication

can be continued. Otherwise, the connection will be

rejected.

b) The subnetwork dependent block (SNPB) provides a

reliable communication with its local network's nodes. The
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packets will be sent to the subnetwork independent block

(PNB). At this moment the packets are assumed error free or

the service is not a reliable data stream.
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a) Scenario 1

* Subnetwork A and B are acceptable by application

User A SNPBa PNB SNPBb User B

Issue Packet

Accept
Packet

Note: There are two cases, first the network service does
not require reliable data transport, second the subnetwork A
and B are reliable enough.

b) Scenario 2

* Subnetwork A is reliable but Subnetwork B is not reliable
and the Subnetwork can support reliable data transport
protocol

User A SNPBa PNB SNPBb User B
Issue Packet

* Controlled
By protocol X
(ie. TP-4)

> *

Controlled
By

Protocol X
Accept Packet

Note: The reliable data transport is maintained by the net-
work protocol on the subnetwork B.
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c) Scenario 3

* Reverse direction of case b)

User A SNPBa PNB SNPBb User B

* Controlled

By Protocol X
(ie. TP-4)

issue Packet

* Controlled

By Protocol X
(ie. TP-4)

Accept
Packet

Note: The reliable data transport is maintained by the
network protocol on the subnetwork A.

d) Scenario 4

* Both subnetworks relies on the protocol and they are not
compatible

User A SNPBa PNB SNPBb User B

* Controlled

By Protocol X
(ie. TP-4)

Issue Packet
__>

* Controlled

By Protocol X
(ie. TP-4)

>* Controlled
By Protocol Y
(ie. TCP)

--- > *

Controlled
By

Protocol Y
Acceot
Packet
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Note: The subnetwork A and B maintain the reliable data
transport. They are not compatible each other. By that, the
control mechanisms are maintained independently.

e) Scenario 5

* Both subnetworks relies on the protocol and they are
compatible

User A SNPBa PNB SNPBb User B

* Controlled

By Protocol X
(ie. TP-4)

Issue Packet

>*

Controlled
By

Protocol X
Accept
Packet

Note: The reliable data transport protocol bypasses gateway.
Because the two end nodes use the same protocol for the
reliable data communication. For an example if the
communicating subnetworks are OSI networks then the reliable
data transport can be maintained only by the end nodes.
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3.4.4 Connection Termination

Releasing a connection between network users is a

relatively simple task compared to connection establishment

or data communication. The connection release can be

distinguished as a user termination and a network

termination. The first termination is evoked by a user when

user finishes the internetwork communication session. The

second termination is evoked by the network, or more

specifically by the gateway. The first termination

(disconnection) request by a network user, is a normal com-

munication procedure. However, the second termination is

generated by a gateway when it confronts any error conditions

such as negotiation failures, improper transmission medium,

excessive retransmissions, and network congestion.

The generic gateway distinguishes the two types of

connection termination cases. First, if the termination

request is originated by a user as a normal procedure, the

gateway closes the connection in a graceful manner. Any un-

delivered packets must be delivered before it closes the

connection. Otherwise the connection must be terminated

immediately.



CHAPTER 4

FORMAL SPECIFICATIONS

4.1. Introduction

Formal specifications of communication programs begin

to appear as early as 1970s. The formal specification

languages have been widely studied during the last few years.

In the survey of Kalnin'sh [KAL 86], 60 formal specification

and verification techniques(languages) were identified. Each

formal specification techniques has its own strong and weak

points. However, the individual comparison of the specifica-

tions will not be discussed in this paper. Further studies

have been done by [KAL 86], (SUN 81], [SCH 81], and by many

other researchers. This section deserves concepts from the

literature on specification and verification techniques, and

uses them to describe the functionality of the generic

gateway. First, we review the characteristics of formal

specification.

The difficulty of formal specification of

communication system is due to the following underling

52
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reasons.

a) Distributed System - The communication programs or

systems are physically distributed, which results in the

information not available in shared memory, but shareable

by communication.

b) Non-deterministic Operation - The communication program

can not be formalized as a deterministic system.

c) Concurrent System Behavior - The communication system

requires multiprocessing environment, and a concurrent

operating system must be provided.

d) Time Bounded - Due to the safety control (ie. deadlock

recovery, lost packet detection etc.) each state is time

bounded.

e) Event Driven - The state transition is event driven.

Packet arrival or expired timer causes major state

transitions in the communication systems.
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4.2 Background of Formal Specification

In short, a specification is a detailed functional,

performance, and operational description of a system (in our

case it is a description of a gateway). Verification is a

proof of correctness of the specification. Specifications

provides a formal description of a system. They provide a

high level of abstracted model of the system and thus avoids

implementation details. Specifications provide a

mathematical or logical foundation (algorithm) for

verification, modeling and simulation, and implementation.

After the specification is done, correctness of the

specification could be proven by the verification, before any

system's implementation exist. The refinement can be done on

the specification level with the result of verification.

As Kalnin'sh [KAL 86] stated that there are three

level of specifications such as the follows: first, abstract

specification (level-i) which describes overall structure of

a system; second, design specification (level-2) which

provides a complete description of functions of the system;

and implementation specification (level-3) which provides the

most detailed specification of the system. In DoD military

standard terminology, these correspond to Type A, B, and C

specification.
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Level-I specification is the first stage of

specification which hides all details of a system. This

stage of specification contains only a "What should it do"

description without describing "How to do." The service

specifications of the OSI protocols are a few examples of

Level-i specification, or Type A level specification.

Level-2 specification explains the more depth of the

system which includes, "How" the system should operate to

provide the services, which have been specified by the Level-

I specification. For example we can consider the protocol

specifications of the OSI as Level-2 specifications. These

are Type B level specification.

Finally Level-3 specification is an implementation

level specification which will guides the system's

implementation. It describes how the actual system should be

generated. In many cases the Level-3 specifications are

strongly bonded with the implementation languages, such as

programming languages. These are Type C level

specifications.

These specifications are required to describe the

functional, performance, and operational aspects of a system.
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4.3. Survey of Existing Specification Schemes

4.3.1 Finite State Machines

One of the oldest and the most popular models of

specifying computer program's and communication systems is

finite state automata(machines) techniques. Finite state

automata (FSA) machines include a tuple of a state variable,

a set of transition functions, a set of input/output

variables, and a initial state. The finite state machines

can be represented as graphical forms such as flow charts, or

tabular forms such as state transition tables. The major

drawbacks of these schemes are: 1) the states of the systems

must be globally visible by single state variable; and 2) the

number of states must be finite and must be kept reasonably

small. In most communication systems the number of states

could be nondeterministic and they might be unbounded, such

as unbounded queues. A few improvements have been made such

as abstract machines which allows more than one state

variable. However, there are other restrictions such as poor

capability in data representations (v-expressions) even

though they give a good expression for the control expres-

sions (p-expressions).
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4.3.2 Petri Nets

Petri Nets are one of the common representation tools

for the specification of communication systems. Petri Nets

represent most common communication system's characteristics,

such as concurrent operation, synchronous communication, and

non deterministic control. Petri Nets can easily represent

the infinite states conditions such as an unbounded buffer.

A disadvantage of Petri Nets is their graphical

representation natures, which limits the number of nodes

specified.

4.3.3 Formal Languages

A relatively new class of specifications have

recently emerged. They are mathematical representations in

the form of algebraic specifications and formal programming

languages. The algebraic specifications, such as abstract

data type and axiomatic specification, provide a mathematical

base for verification, especially semi automatic

verification. Several protocol specifications and

verifications have been demonstrated with these schemes. The

formal programming language approaches have a few advantages.

For example, these methods allow the communication system's

designer and implementor to use general software engineering

techniques, and the usual program verification techniques.

In general, the algebraic specifications tend to be more
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abstract and ambiguous then the formal languages. They

require high mathematical understanding from users. On the

other hand, the formal programming languages are more

readable and less abstract.

4.3.4 ISO Standards

The Formal Description Technique (FDT) groups of the

ISO community have proposed standard specification languages

for their formal description of OSI models. They are LOTOS

(Language of Temporal Ordering Specification) [DIS 8807] and

ESTELLE (Formal Description Technique based on an Extended

State Transition Model) [DIS 90741 . These will be discussed

in the sections below.

ESTELLE is more favored in the practical world,

because it is based on traditional programming languages,

such as Pascal. It is easily understand by the most

programmers. The similarity between the specification

language and the implementation language provides easy

transition from specification into implementation.

On the other hand the LOTOS has been favored in

academical world. LOTOS is based on the concepts of calculus

of communication systems and abstract data type.

Specification with LOTOS can be verified mathematically and

provide more abstracted specification than ESTELLE. LOTOS
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specification have two components. The first component deals

with the description of process behavior and interaction. The

second component deals with the description of the data

structure and value expressions. We have selected LOTOS to

specify the generic gateway. It provides the concurrency

features for multiple protocol processing and leads itself to

an AI-based testing method.

4.4 Introduction to LOTOS

In this section, a few characteristics of LOTOS will

be presented to aid the understanding of the formal

specification of generic gateway. The more detailed LOTOS is

contained in the OSI document [DIS 8807].

4.4.1 Abstract Data Type

One definition of abstraction is, "the process of

forming a concept or idea by imaginatively isolating or

considering apart the common characteristics of a group of

distinct object or event." Subroutines and data structures

are well known abstracted events and objects in computer

programs. The term "abstracted data type" is referred to a

class of object defined by a representation independent

specification [GUT 75]. In general the abstract data type

can be represented as a tuple of:

AbstractData_Type ::= <(operator), (carrier), (equations)>.
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In LOTOS an abstract data type is defined by names of

data carriers and operations. The names of data carriers are

referred to as sorts. The sorts and operations of a data

type are referred to as the signature of the data type. It

defines the syntax of a data type. Below is an example of a

type definition of the natural numbers. The dcinition has

the name 'Nat numbers', so that it may be distinguished from

other data types. The signature of 'Nat-numbers' consists of

the single sort 'nat', and the operations '0' and 'succ'.

Isucc' can be applied to a single element of sort 'nat' and

yields also an element of 'nat' as its result. '0' is an

operation that has no argument, and therefore does not depend

on any value. Such operations are called constants.

Type Nat numbers is
sorts nat

opns 0: -> nat
succ: nat -> nat

endtype

Terms represent elements of a sort. If the denoted

element belongs to sort s it is said that a term is of sort

s, and is referred as the s-term. For example nat-terms are:

0, succ(0), succ(succ(0)),

Each of these nat-terms can be interpreted as one element of

the algebra of the natural numbers. In the Nat numbers above

we can add a new operator '+':
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opns 'f': nat, nat -> nat.

With the new operator '+ new terms may be produced, i.e.

succ(O) + succ(succ(O)). This construct is an equation. With

the introduction of the equation and terms with variables, we

now have the tools to specify property of operation. For

example, a correct definition of the '+' operator is given

by:

eqns forall x,v:nat
ofsort nat

x + 0 = X;
x + succ(y) = succ(x + y).

The first equation expresses the behavior of the operator

when it combined with the constant '0'. The addition with

non-zero number is given by the second equation.

4.4.2 Behavior Expression

In LOTOS, distributed systems are described in terms

of processes. A system as a whole is a single process that

may consist of several interacting subprocesses. These

subprocesses may in tern be refined into subprocesses.

Therefore, a specification of a system in LOTOS is

essentially a hierarchy of process definitions.

In LOTOS, each orocess can be imagined as a black

box, or object, that is capable of communicating with its

environment. The mechanisms inside of this box are not
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observable. The process communicates with its environment by

means of interactions. The atomic form of interaction is an

event. An event is a unit of synchronized communication that

may exist between two processes that can both perform that

event.

The communica:ion element consists of a label, which

is ceferred to as gate, and a finite list of attributes. Two

type of attributes are possible: a value expression,and a

variable expression. The value expression describes a data

value and is preceded by an exclamation mark. A variable

expression has a form '?x:t', where x is a variable name and

t is sort identifier of the variable. The sort identifier

indicates the domain of values over which x ranges.

In LOTOS, the communication method is different from

traditional communication descriptions, such as a sender and

receiver relationship. Instead, the interacting parties

offer value or variables through the synchronized gates.

Examples of communication via synchronized gates are given

here.

Examples:

where: PL, P2: processes

g, a: gates
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P, Q: behavior expressions

x: any variable (message).

a) 21: g!x and P2: g2 then

P1 accepts '2' as its x value and the processes P1 and P2

continue their own processes.

Note: The x is a variable which means that process P1

will accept any value which is offered from any other

party.

b) P1: g!l and P2: g!3 then

the two processes offer different values, both process

will wait until any other process accepts those values.

Note: In this, case if another process P3 offers gate!x

then any one of the process P3 will accepts any one of

the value, I or 3, and those agreed pair will continue

the process. Choice of the process may be non-

deterministic.

c) P1: g?x:int and 22: g!3 then

Pl accepts the value 3 as its value of x and both

process will continue process.

Note: In this case the ? has the special meaning that

P. is willing to accept any value.
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4.4.3 Basic Operators in LOTOS

Nondeterministic (Choice)

P [J Q - The only one of the process P and Q will be chosen

and the choice is non-deterministic.

Parallelism

P IraIl Q - The process P and Q will progress

simultaneously, but they have to be synchronized by the

activities on the gate 'a'.

P III Q - The process P and Q will be in progress

simultaneously but they do not need to be synchro-

nized.

Disable

P [> Q - Q can be in active state only before or during

the process of the P process no later than that.

Enable

P >> Q - Q can be in active state only after the process

P terminates the execution successfully.

Guarded process

condition ] -> Q - Q can be executes only if the

propositional condition is satisfied.
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Hiding

hide g in P - The gate 'a' is a local gate so it can not be

observed from the outside of the process P.

Internal event

i(P} - The process P is internal events which means that

the operation of the process can not be visible but

only result can be exported.

Behavior Identifier

process (gates] (parameters) - It is the same kind of

procedure specification in the usual programming

languages.

4.5 Verification Techniques

While the formal specification techniques are used

to define communication systems, verification techniques are

used to insure their correctness. Therefore, the

verification could be used during the design phase before any

system implementation exists, in order to avoid possible

design errors. In general, the verification schemes can be

formally classified as "reachability analysis" or "program

proving" methods.
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4.5.1 Reachability Analysis

Reachability analysis techniques exhaustively explore

all the possible interactions of two (or more) entities

within a system. From a given initial state, all possible

transactions( user commands, time-outs, message arrivals) are

generated, leading to a number of new global states. This

process is repeated for each of the newly generated states

until no new states are generated. In this way all possible

system states are reached and tested.

Reachability analysis is well suited to check the

general correctness properties of specifications. These

properties are direct consequence of the structure of the

reachability graph. Global states with no exits are either

deadlocks or desired termination states. Similarly,

situations where the processing for a receivable message is

not defined, or where the transmission medium capacity is

exceeded are easily detected. The generation of the global

state space for transmission models is easily automated, and

several computer aided systems for this purpose have been

developed.

The major difficulty of this technique is "state

space explosion" because the size of the global state space

may grow rapidly with the number and complexity of protocol
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entities involved and the underlying system's service. This

verification is only efficient when it is used with limited

break points. As noted, the reachability analysis methods

are frequently used to verify the specifications which are

based on the FSA.

4.5.2 Program Proving

The program proving approach involves the usual

formulation of assertions which reflect the desired

correctness properties. Ideally, these would be supplied by

the service specification. But, as noted above, services have

not been rigorously defined in most protocol work, so the

verifier must formulate appropriate assertions of his own.

The basic task is then to show (prove) that the protocol

programs for each entity satisfy the high-level assertions

(which usually involve both entities). Often this requires

formulation of additional assertions at appropriate places in

the programs.

A major strength of this approach is its ability to

deal with the full range of protocol properties to be

verified, rather than only general properties. Ideally any

property for which an appropriate assertion can be formulated

can be verified, but formulation and proof often require a

great deal of ingenuity. Only modest progress has been made
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to date in the automation of this progress.

4.6 Requirements for Communication Systems Verification

Whether the reachability analysis or program proving

is used, the following properties should be verified.

a) Deadlock Freeness - Deadlock is one of the most common

problem for the communication systems. There are numerous

causes of the deadlock in the communications systems. Some

of them are preventable deadlocks (allocating limited

resources). Some of them are recoverable deadlocks (the lost

or corrupted packets). Then there are deadlocks by the

incorrect specification.

b) Liveness - While the deadlocks lead to a "dead" state by

the lack of a condition which leads the next state in the

state transition, the liveness problem deals with the case

when the next state is omitted from the specification

(incomplete specification). A liveness proof must verify

that from each reachable state any other state is reachable,

or for each reachable state and event there exists a

reachable state from which this event can occur.

c) Tempo-blocking Freeness(livelock freeness) - Unlike

deadlock, the livelock is experienced while the processes are

in live state. However, they can experience non-
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productive(non-progressive) infinite looping. For example,

the unbounded lost and retransmissions of packets can cause

livelock. The non-productive infinite loop freeness which is

also called tempo-blocking freeness must be proved.

d) Starvation-freeness - When several processes contend for

resources which become available infinitely many times, no

process should be prevented forever from acquiring the

resources that it needs. This property is also called

fairness.

e) Recovery from failures - After a failure the protocol

should return to normal execution state within a finite

number of steps.

f) Self Synchronization - From any abnormal state, the

protocol should return to a normal state within a finite

number of steps (This property and recovery are closely

related).

g) Correct Execution - The system specification must produces

the same result which is intended by the designer.
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4.7 Verifiable Testing

As Loeckx et al. (LOE 871 noted, "Program testing...

may increase confidence in correctness of a program but it is

far from guarantying that the program is free from semantic

errors." Program testing might not be sufficient enough to

prove the total correctness of the program. Formal

verifications are the only way to prove the specification's

correctness. Several verification techniques have been

proposed and demonstrated during last decades [SCH 81a] [SHA

831. Unfortunately, the verification techniques are not well

established yet. In the most cases, the only simple systems

have been verified and the complex systems verification

experienced a great deal of difficulty.

The major difference between formal verification and

testing is in the degree of abstraction of the system.

First, the testing methods abstract the systems on the

functional level and then the abstracted systems are executed

with predefined events. On other hand the verification

methods abstract the system not only on the functional level

but also on the event level. When the system is abstracted

only on the functional level, the system can be verified on

the given set of events. In many occasions, it is referred

as an experimental frame. On contrary, the verification may

produces a proof for all possible events.
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in this document the concept of verifiable testing is

proposed. Verifiable testing (VT) is a testing method that

differs from traditional testing methods (i.e., simulations)

in he following aspects:

a) VT concentrates in the semantic or analytic property

of system while simulation concentrates in the

functional or quantitative properties.

b) VT tests verification properties on the given

experimental events, such as liveness and safeness.

Simulation only centers on the systems behavior for the

experimental events.

Concrete verifiable test scheme is introduced in the

Chapter 6 of this document. The verifiable testing schemes

are based on the use of an Al-based constraint language.

More specifics on verifiable testing are contained in Chapter

6.



CHAPTER 5

GENERIC GATEWAY SPECIFICATION WITH LOTOS

The generic gateway specification is based on the

discussions from the Chapter 3 of this document. The generic

gateway will be referred to as a gateway for the convenience.

in this specification, the subnetwork dependent modules

(SMABs) are not specified for the following reasons: a)

Variety of the subnetworks - the diversity of the subnetwork

medium access schemes are too great to be specified by one

specification; b) The lower layers of protocols are strongly

hardware related protocols; c) The lower layer protocols are

not critical factors on this gateway formalization. As the

result, the SNPBs are assumed as the lowest layer of the

subnetwork protocols. The GGP is not specifically specified

in the current specification. The GGP will be introduced in

the next phase of the research.

The following specification policies are applied as

the gateway specification environment:

a. Two types oc subnetworks, connectionless, and

connection-oriented subnetworks.

72
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b. Cross network reliable data stream controls are not

allowed. Each subnetwork requires to manage the reliable

data transfer scheme individually (locally).

c. The gateway requires to provide multiple connectability.

d. Each communication session may be limited with in one

connection and no more than one session may share the same

connection.

5.1 Gateway System Structure

In LOTOS, the gateway is represented by a group of

data types and a process. The data types are definitions of

the objects which are accessed in the process. The data

types are as messages or packets, connection reference and

its list(table), and the subnetwork and gateway information.

The gateway process consists of a number of subprocesses

which individually represents each represented sub modules of

the gateway, such as SNPB, PNB, etc. Each subprocess

consists of its subprocesses and so on. Hence, the gateway

specification is provided as a hierarchical structure. In

this specification, the two types of subnetworks are defined,

i) connectionless, and 2) connection-oriented subnetwork.

The high level structure of the gateway specification is:

Specification GenericGateway

global type definitions }
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behavior GenGateway

process GenericGateway

where

(* connectionless subnetwork part *)
( connectionless subnetwork local data types }

process SNPB
(connectionless subnetwork behavior }

endproc

(* connection-oriented subnetwork part *)
{ connection-oriented subnetwork local data types }
process SNPB

(connection-oriented subnetwork behavior }
endproc

(* protocol negotiation part *)
( PNB local data types }

process PNB
( PNB behavior specification }

endproc

endproc
end specification.

The interactions between subprocesses to external

environment are called as events. Each event consists of an

event label and a finite list of event attributes. The event

label, which is referred to as a gate, is a communication

channel name by the traditional terminology. The attributes

are messages on the channels. However, the gates and

channels are functionally different from several points and

there is no fundamental difference between sender and

receiver. More detailed gate description is contained in the

ISO LOTOS specification document [ISO 8807].
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The gates can be either external interface gates or

internal gates. If the activities on the gates are

interaction with the external environment then the gates are

referred to as interface gates. if the interactions are

between subprocesses or with in a process then the gates are

referred to as internal gates. The only difference between

internal gates and interface gates is that the internal gates

might be hidden from the external environment while the

external gates may represent the behavior of the system by

the activities on the gates. The gate 'a' and 'b' are

internal gates, and 'pa' and 'pb' are internal gates, in the

gateway structure as in Figure 5.1.

CORE
----------------------------------------+

a --------- pa +---------- pb +--------- b
SMAB--------+ SNPB +----+ PNB +----+ SNPB +-SMAB

+--------- --....------ ---------

neta +---------------------------------------- netb

gates: a, pa, pb, b

Figure 5.1 Generic Gateway Communication Gates
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5.2 Data Type Specification

As noted previously, the data types serve two roles.

First, it specifies the message object definitions, such as

communication packets. Second, it defines the network

information such as the data base entries and the connection

management information. Similar to the process structure,

the data types are represented in a hierarchical structure.

Complicated data type structures can be constructed by the

relations of the simple data types. For example, the

connection reference entries on each connection table can be

defined from the simpler data type definitions such as

'address definition', 'queue definition', etc.

5.3 Intermodule Relation

In general, each service primitive or packet is

decomposed into various fields. Each field is owned by a peer

layer protocol and the use of the field strictly belongs to

the peer layer protocol. For instance, when a transport

layer sends a data unit to a network layer it attaches

transport layer protocol information on the data unit packet

(encapsulation). In the destination node, the reverse

process is performed. The transport layer removes the

transport layer specific information from the data unit
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(decapsulation) before it sends the data unit to the

destination node upper layer. An example of this is shown in

Figure 5.2. The SMAB on subnetwork A sends a service

primitive to SNPB A, after it extracts the header of SMAB

(Infol). Then the SNPB extracts its header (Info2) and it

sends the service primitive to PNB. On the subnetwork B, new

headers are attached (Infol' and Info2'). However the header

structures may be different on both side subnetwork.

To identify the connection, each SNPB maintains a

connection reference entry (SConRef) for each logical link

between communication entities. The SConRefs on both SNPBs

are linked by PConRef on the PNB. A service primitive on

subnetwork A is referenced by SConRef and it is referenced by

SConRef' on the subnetwork B. By separating the connection

reference, each subnetwork module can maintain the connection

status independently. For example, the packet sequence

number can be individually.



78

(A) SMAB (B)
4---------------+---------------- ----------------------------

Infol I Info2 I Data I I Data jInfo2' Infol'j
-------------- +---------------- --------------------------- +

\J/ \j/ ~SNPB \/ \/

+-------------------+ ----------- --------- +

Info2 IData II Data I Info2 'I
4------+----------- --------------------

4--------------------4-+----------------------

SConRef ISConRef'I
+-------------------- +--------------------

+-----------

4---> Data <--+-
------------

---------------

4------------------ I I----- ----------
4---------------

PConRef

Figure 5.2 Inter Module Relation

5.4 SNPB Structure

The main body of SNPB which is named as SNPBStart

consists with two processes, SNPBInit and SPNB are shown in-

Figure 5.3. During system initialization phase, the SNPBs

will be initialized and the result of the initialization will

be informed to the PNB by the process named 'SNPBInit'.-

Suppose the initialization step is not succe-7ful, tChen no

further operation may possible. Only successful initializa-

tion will yield the gateway to further steps. If the SNPBi

are successfully Lnitialized and their internal information
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is transferred to PNB then the SNPBs can continue the main

process 'SNPB' (see Figure 5.3).

process SNPBStart~a,b] :noexit
SNPBnit~b] (Jinfo, cons)

accept info:SNetlnfo, cons:SConList in
SNPBI~a,bi (info,cons)

where

process SNPBInit[b] :exit (SNetlnfo, SConList):=
i(Mynetinfo, cons) (* internal function, which produces

subnetwork information and initial
connection reference list.

b !Mynetinfo; exit (Mynetinfo, cons)
endproc (*SNPBInit k

To/From PNB
--------------------------

b b
+-(SNPBStart) ------------------------- ------------

-------------------- +------------------

SNPBInit SNPB

4-------------------4- ---------------

a
+------------------------------------------------- ------------

To/From SMAB

Figure 5.3 Structure of SNPBStart process

The process SNPB consists of four subprocesses which

are two interface processes, a connection handler process,

and a protocol process. Figure 5.4 shows their relationship
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in the SNPB. The subprocesses interact with each other with

activities on the gates (internal gates). The four

subprocesses are (see Figure 5.4):

a) SNPBUlnterface - interfaces the protocol service

primitives between SNPBProtocol and PNB,

b) SNPBD~nterface - interfaces the protocol service

primitives between SNPBProtocol and SMAB,

c) SNPBProtocol - provides subnetwork protocol services,

d) SNPBConHandler - manages connection reference list and

links the protocol primitives to the appropriate

connection reference.

process SNPB(a,b] (info:SNetlnfo, cons:SConList) :noexit
hide ga, gb, ds in

SNPBConHandler [ds] (info, cons)
jds] I

SNPBDlnterface[a,ga,ds] (info)
jga] l

SNPBProtocolllga,gb,ds] (info)
I (gb]Il

SNPBUlnterface(b,gb,ds] (info)

where
process SNPBConHandler ... endproc

process SNPBUlnterface ... endproc
process SNPBDnterface ... endproc
process SNPBProtocol ... endproc

endproc (* SNPB *



To/From PNB
+-(SNPB ) - - - - - - - - - - - - - - - - - - - - - ---

b

-- - - - -- - - - -- - - - -- +- --- -- -

SNPBU~nterface

S
-- - - -- - - - - - - - - - - - N

gb P
I B

+------------------------------ -------------- + C
SNPBProtocol I ds 0

- --- -- -- --
+------------------------------------ A

ga D
L

---------------------- ------------ E
SNPBDrnter race R

4------------------------------------- +----------4-

a

----------------------------------- -----------------------------------

To/From SMAB

Figure 5.4 SNPB Structure and Subprocesses

5.5 PNB Structure

The PNB structure is similar to the SNPB structure

above. Only, the inside of its behaviors are different. The

some structure in Figure 5.4 can be applied for the PNB. The

subprocesses structure is the same, ut the functions are

different.
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5.6 Peer Layer Service Relations

In general, the services of an n-layer are the

capabilities which the n-layer offers to n-user (n+l layer).

The services are specified by describing the service

primitives and parameters which characterize each service. A

service may have one or more related primitives which

constitute the interface activity which is related to the

particular service. Each service primitive may have zero or

more parameters which convey the information required to

provide the service. Primitives are of the three general

types (ANSI 802.2]:

REQUEST: The request primitive is passed from the n-user to

the n-layer to request that a service be initiated.

INDICATION: The indication primitive is passed from the

n-layer to the n-user to indicate an internal n-layer

event which is significant to the n-user. This event

may be logically related to a remote service request,

or may be caused by an event internal to the n-layer.

CONFIRM: The confirm primitive is passed from the n-layer to

the n-user to convey the results of one or more

associated previous service request(s). This primitive

may indicate either failure to comply or some level of

compliance.
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SERVICE SERVICE SERVICE
USER PROVIDER USER

Request

Indication

Confirm

Figure 5.5 Service Primitives

In the OSI basic reference model, each peer layer of

protocols are related each other. The N layer protocol is an

user of N-'. layer protocol service and also it is N layer

protocol service provider for the N+1 layer protocol. The

peer layer's relationship can be applied to the generic

gateway. The SMAB provides services for the SNPB and the

SNPB provides services for the PNB. Figure 5.6 shows the

generic gateway structure and its services between layers.

However, the PNB service can not be defined as an service

user and service provider relationship (PNB is not a peer

protocol). Hence, the PNB services can not be defined in the

peer protocol hierarchy because the services provided by the

PNB are not protocol services.
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Figure 5.6 Gateway Services Structure

5.7 Connection Oriented SNPB Protocol Specification

5.7.1 Service Primitives

This section specifies the service required of the

SNPB by the PNB as viewed from the PNB. This service allows

a local SNPB entity to exchange packets with the remote SNPB.

5.7.1.1 Connection Establishment

The service primitives associated with connection

establishment are:

Connection Request (ConReq),

Connection Indication (ConInd),

Connection Response (ConRes),

Connection Confirm (ConCnf).
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The ConReq primitive is passed to the SNPB to request

that a logical link connection be established between a local

SNPBSAP (SNPB service access point) and a remote SNPBSAP.

The Conlnd primitive is passed from the SNPB to indicate the

results of an attempt by a remote entity to establish a

connection to a local SNPBAP. The ConRes primitive is passed

to the SNPB to respond that a logical connection be

established between the local SNPBSAP and a remote SNPBSAP.

The ConCnf primitive is passed from the SNPB to convey the

results of the associated ConReq primitive.

5.7.1.1.1 Connection Request (ConReqP)

Function: This primitive is the service request primitive

for the connection establishment service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the

SNPB when the PNB wishes to enable a logical link

ccnnection, of a given service class to a local SNPB.

Effect on Receipt: The receipt of this primitive by the

SNPB causes to the local SNPB entity to initiate the

establishment of a connection with the local user node.

Additional Comments: The ConReqP primitive may initiate a
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new connection reference when the ConRef not known

by the PNB.

5.7.1.1.2 Connection Indication (ConIndP)

Function: This primitive is the service indication

primitive for the connection establishment service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate that a connection of a certain service

class has been established.

Effect on Receipt: The PNB may use this connection for

Internet work connection establishment.

Additional Comments:

5.7.1.1.3 Connection Response (ConResP)

Function: This primitive is the service response primitive

for the connection establishment service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from the PNB to

the SNPB to indicate that a connection of a certain
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service class has been established on the remote SNPB.

Effect on Receipt: The SNPB may use this connection for

data unit transfer.

Additional Comments: The ConResP primitive indicate that

the connection is established between the remote node

and the remote SNPB.

5.7.1.1.4 Connection Confirm (ConCnfP)

Function: This primitive is the service confirm primitive

for the connection establishment service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed to the PNB from

the SNPB to indicate that a connection of a certain

service class has been established on SNPB.

Effect on Receipt: The PNB may use this connection for

Internetwork connection establishment.

Additional Comments: At this moment the connection is

established between SNPB and local node. And the data

units may be accepted.

5.7.1.2 Connection Release

The service primitives associated with connection

release are:
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Disconnection Request (DisReq),

Disconnection Indication (DisInd).

The DisReq primitive is passed to the SNPB to request

that a logical link connection be released between a local

SNPBSAP (SNPB service access point) and a remote SNPBSAP.

The Dislnd primitive is passed from the SNPB to indicate the

results of an attempt by a local entity to terminate a

connection to a remote SNPBAP.

5.7.1.2.1 Disconnection Request (DisReqP)

Function: This primitive is the service request primitive

for the connection termination service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the

SNPB when the PNB wishes to terminate a connection.

Effect on Receipt: The receipt of this primitive by the

SNPB causes to the local SNPB entity to terminate a

connection.

Additional Comments: Receiving DisReqP primitive indicates

that the connection on the remote side is not active

any more by that further incoming data units from

local subnetwork may be discarded.



89

5.7.1.2.2 Disconnection Indication (DisIndP)

Function: This primitive is the service indication

primitive for the connection termination service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate that the connection is terminated on

local SNPB.

Effect on Receipt: The PNB may use this primitive for

Internetwork connection termination.

Additional Comments: The local connection on the SNPB no

longer exist by that no further data units will be

accepted.

5.7.1.3 Data Transfer

The service primitives associated with data transport

are:

Data Unit Request (DataReqP),

Data Unit Indication (DateIndP),

Acknowledgement Request (AckReqP),

Acknowledgement Indication (AckIndP).

By DataReqP primitives the data units will be

received from PNB, and by DataIndP primitives the data units

will be sent to the PNB. In either case the data units must
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be acknowledged.

5.7.1.3.1 Data Request (DataReqP)

Function: This primitive is the service request primitive

for the data unit transfer service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the

SNPB when the PNB wishes to send a data unit.

Effect on Receipt: The receipt of this primitive causes the

SNPB to send the data unit to the local node.

Additional Comments: The data which is received as a

DataReqP primitive may be stored in the queue.



91

5.7.1.3.2 Data Indication (dataIndP)

Function: This primitive is the service request primitive

for the data unit transfer service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate the arrival of an data unit from the

specified local entity.

Effect on Receipt: The PNB may sends the data unit to

remote SNPB.

Additional Comments:

5.7.1.3.3 Acknowledgement Request (AckReqP)

Function: This primitive is the service request primitive

for the data unit transfer acknowledgement service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the

SNPB when the previous data unit was transferred

successfully to remote side.

Effect on Receiot: The receipt of this primitive causes the

SNPB to attempt to send the data unit acknowledgement
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to local subnetwork node.

Additional Comments: The receipt of this primitive means

that the previous data unit transfer was successful by

that the data unit may be removed from the queue on the

SNPB.

5.7.1.3.4 Acknowledgement Indication (AckIndP)

Function: This primitive is the service request primitive

for the data unit transfer acknowledgement service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate the arrival of an data unit from the

remote SNPB.

Effect on Receipt: The PNB may sends the data unit

acknowledgement primitive to remote SNPB.

Additional Comments:

5.7.2 Connection-oriented SNPB Connection Reference Structure

In general, gateways provide more than one

connections or sessions simultaneously. Each service

primitive and protocol function must be identified by the

connection reference entity (ConRef). The ConRef may

contain following information:



93

Addresspair: Source and destination address,

ConInfo: Various information, such as: subnetwork

information, sequential number of data unit to send

next, size of buffer for data unit queues, state of

connection reference, etc.

Ques: Window queues for data transport.

5.7.3 Connection-oriented SNPB Elements of Procedure

5.7.3.1 General

This section specifies the individual connection

entities on the connection oriented SNPB. The connection

erltity which is referenced by ConRef has following state

phases: connecting, data transfer, and disconnecting. From

state transition maps (Figure 5.7, 5.10, 5.11) the state 'sl'

to 'S7' are connecting states, and 's8' to 'slO' are data

transfer states. Finally, 'sil' and 's12' are disconnecting

states.

5.7.3.2 Connection Establishment Phase

The internetwork communication link can be initiated

by a local subnetwork user or remote subnetwork user as shown

in Figure 5.7.

a) By local subnetwork user:

The local user's connection request is received by
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SNPB as a connection indication service primitive (ConIndM)

from SMAB. The SNPB initializes a connection reference table

for the specific connection entity. Then, it sends a

connection request to the PNB as a connection indication

service primitive (ConlndP). The connection request service

primitive is sent to the remote user under PNB's and remote

SNPB's control. The result may returned from the PNB to the

local SNPB, either disconnection request(DisReqP) or connec-

tion confirm(ConCnfP).. When the result of the connection is

not successful (DisReqP), the currently created connection

reference is released. No further interaction may allowed on

this connection reference. If the result of the connection

is successful (ConCnfP) then the SNPB sends the connection

confirm to SMAB and the SNPB enters data communication phase.

b) By remote subnetwork user:

The remote user's connection request is received by

SNPB as a connection request service primitive (ConReqP) from

PNB. The SNPB initializes a connection reference table for

the specific connection entity. Then, it sends a connection

request to the SMAB as a connection request service primitive

(ConReqM). The connection indication service primitive is

sent to the local user under local SNPB control and the

result is returned from SMAB to local SNPB either

disconnection indication(DisIndM) or connection response

(ConResM). When the result of the connection is not
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successful (DisIndM), the currently created connection

reference is released. No further interaction is allowed on

this connection reference. if the result of the connection

is successful (ConResM), the SNPB sends the connection

response to SMAB. Then the SNPB enters data communication

phase.

When two independent connection establishments are

initiated from both ends of the same pair of communication

entities the connection establishment processes may collide

with each other at the gateway. In this case, there are two

options for the gateway: it reject: one of the connection

request and it allows only one connection between the com-

municating pair; or it allows both connections between the

communicating pair. In this specification, the first scheme

is selected because it is more simple, and in some subnet-

works multiple connection may not be allowed between any pair

of communicating nodes.

In this specification, the two way hand shaking

scheme is used for the communication establishment method. In

this scheme, the called user may sends the series of data

units before the calling SNPB sends a connection conform

primitive to calling user. In this case the incoming data

units may be stored in the queue.
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Figure 5.7 State Transition of Connection Establishment Phase

5.7.3.3 Data Transport Phase

In this specification, the data units are managed by

two individual data queues one for each directional data

transport. More specifically, the windowed queues are used

in this specification. In the windowed, queue the queue

element has locality information, viz. sequential number, and

it may be inserted in any order but it can only be extracted

in sequential order. For example, Figure 5.8, the new data

packet Y which has been sequentially labeled x can by
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inserted at any moment. However, the packet can be removable

when all preceding packets are inserted and also they have

been removed.

(insert Y at x) ->+ (x: position)
----------------- V----------------------------------------------------------

Y I--
-----------------------------------------------------------------------------

x+l x x-l .... t+l t .... (remove)

Figure 5.8 Windowed Queue

a) Local node to remote node data transfer - One data

unit transfer involves four service primitives on the SNPB.

The complete sequence of operation is called a data transport

cycle. The data transport cycle starts by receiving a data

unit which created from local node by local SMAB and it is

transferred to the local SNPB as a DataIndM. The date unit

is tranfzrred to Pr:B as a DatalndP. Then, the data unit is

acknowledged by PNB as AckReqP. The data transport cycle is

completed by sending the AckReqM to the local SMAB and

finally to the local node. In this specification, the

window scheme is used in the SNPB. The SNPB may receive a

series of data units without being delayed by waiting for the

acknowledgement from the remote node. The data units may or

may not be received in order and are stored in the queue. The

data units will be transferred to the PNB when the data unit

become the expected data unit. In fact, the window queue is
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more complicated than provided in this specification. The

recovery from the lost data units must be provided. But in

this specification they are not be considered, because it

involves complicated problems.

DataIndP AckReqP AckIndP DataReqP

Gate b
------------------------------ ------------------ ---------------

+----------------- -- - - - - -

I I I I

I I I I

L Fu .9acQue -{RemQue

+------------------------------ ------------------ ------ ----------

\ / Gate aT

DatalndM AckReqM AcklndM DataReqM

Figure 5.9 Data Transfer Queues

b) Remote node to local node data transfer - This

case is similar to above example, however the data units are

transferred from the node on the other subnetwork. In a

similar way, the data transport cycle involves four service

primitives on the SNPB. The data unit is transferred from

the PNB to the local SNPB as a DataReqP primitive. Then, the

data unit is stored in the remote queue. It is sent to the
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local SMAE if it is the expected data unit from the local

SMAB. Otherwise, it is stored in the queue.

There are two different strategies to send the

acknowledgement back to the PNB. First, the SNPB sends the

acknowledgement back as soon as the data unit is sent to the

local SMAB. Second, it holds the acknowledgement until the

data unit has been transferred correctly to the final node

and the acknowledgement is returned from the final node of

the data unit. The t-wo strategies have strong and weak

points of their own. First, if the acknowledgement was

returned from the final node then the gateway may assure that

the previous data units have been transmitted to the final

node. That may cause a problem, especially when the each

interconnected subnetwork has different transmission time

such as a LAN to WAN interconnection. Second, if the ack-

nowledgement is returned by the SNPB or SMAB the transmission

time related problem is solved however the gateway may not

see the complete data transmission status.

The state transition map of the SNPB data transfer

phase is illustrated in Figure 5.10.
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Figure 5.10 State Transition of Data Transfer Phase

5.7.3.4 Connection Termination

The connection termination requires one of three

conditions, incomplete connection attempt, user request, and

unrecoverable internetwork communication failure. The first

and third conditions force the communication session to

terminate immediately. The second condition allows the user

to terminate the connection gracefully by delivering any non-

transferred data units to the destination node.

The state transition map is illustrated in Figure 5.11.
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5.8 Connectionless SNPB Specification

5.8.1 Service Primitives

The connectionless SNPB protocol service primitives

are similar to the connection-oriented SNPB protocol service

primitives. The data transport primitives are discussed in

the following sections.

5.8.1.1 Data Request (DataReqP)

Function: This primitive is the service request primitive

for the data unit transfer service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the

SNPB when the PNB wishes to send a data unit.

Effect on Receipt: The receipt of this primitive causes the

SNPB to attempt to send the data unit.

Additional Comments: When the ConRef is not an assigned

reference, viz. the data unit is the first data unit

between communicating entities, then the ConRef will be

created and the further communication between the

communicating pair nodes will be referenced by the

ConRef.
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5.8.1.2 Data Indication (DataIndP)

Function: This primitive is the service indication

primitive for the data unit transfer service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate the arrival of an data unit from the

specified local entity.

Effect on Receipt: The PNB may sends the data unit to

remote SNPB.

Additional Comments: The first data units for the

communication pair forces to create a connection

reference(ConRef) which can be used during

data transport between the communication

node pair.

5.8.1.3 Acknowledgement Request (AckReqP)

Function: This primitive is the service request primitive

for the data unit transfer acknowledgement service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from PNB to the



104

SNPB when the previous data unit was transferred

successfully to remote side.

Effect on Receipt: The receipt of this primitive causes the

SNPB to attempt to send the data unit acknowledgement

to local subnetwork node.

Additional Comments: Receipt of this primitive means

that the previous data unit transfer was successful by

that the data unit may be removed for the queue on the

SNPB.

5.8.1.4 Acknowledgement Indication (AckIndP)

Function: This primitive is the service indication

primitive for the data unit transfer acknowledgement

service.

Semantics of the Service Primitives: The primitive shall

provide parameters as follows:

ConRef,

PNPkt.

When Generated: This primitive is passed from SNPB to the

PNB to indicate the arrival of an data unit

acknowledgement from the specified local entity.

Effect on Receipt: The PNB may sends the data unit

acknowledgement primitive to remote SNPB.

Additional Comments: When the remote SNPB receives this

primitive, from the PNB, it can remove the data unit

from its queue.
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5.8.2 Connectionless SNPB Connection Reference Structure

The connection reference table and its entries are

similar to the connection-oriented subnetwork case. However,

in the connectionless case, the FIFO queue is specified

instead of the Window queue. It may contains the following

information:

Addresspair: Source and destination address,

ConInfo: Various information, such as: subnetwork

information, size of buffer for data unit queues, etc.

Ques: FIFO queues for data transport.

5.8.3 Connectionless SNPB Elements of Procedure

5.8.3.1 General

This section specifies the individual communication

entities of the connectionless SNPB. In the generic gateway,

the connectionless subnetwork SNPB also maintains connection

reference (ConRef) and all service primitives are referenced

by ConRef.

6.7.3.2 Connection Establishment Phase

The first data unit between a pair of communication

nodes, sender and receiver, initiates a connection reference

(ConRef). The connection may be used for the data unit's
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transfer between those nodes. The connection reference for

the connectionless subnetwork yields advantages as follows:

1) the uniform interface is possible between SNPB and PNB; 2)

if the remote subnetwork is connection-oriented subnetwork

then the connection entry can be easily located between local

and remote SNPB.

The connection establishment may be initiated by local

subnetwork user or remote subnetwork user.

a) By local subnetwork user:

When the SNPB receives a DataIndM primitive from the

SMAB, the connection reference table is searched whether the

connection reference is available or not with the address

pair (sender and receiver) of the primitive. If there is an

connection reference for the address pair then the data unit

can be transferred with the connection reference to the PNB.

On the other hand, if there is no connection reference for

the address pair in the connection reference table, then the

primitive is assumed as the first data unit between the

communicating pair nodes. Then, a new connection reference

will be created and any further data units may be referenced

between those pair nodes. In either case, the data unit will

be sent to the PNB as DataIndP primitive.

b) By remote subnetwork user:



107

Unlike the connection establishment by the local data

unit node, the unreferenced data unit is known by the SNPB.

When a data unit is transferred from the PNB the data unit is

already linked to a connection reference entry or it is

referenced to an empty reference. When the reference is

'SO', this implies that the data unit is not a referenced

data unit and a new connection reference may be created with

the address pair which carried on the 'SO'.

5.8.3.3 Data Transport Phase

in this specification, two FIFO queues are used for

the data unit storage, one for each directional data

transport. The FIFO queue is one of the well known temporal

storage management scheme for the communication systems (see

Figure 5.12). It includes two basic operations, "insert" and

"remove." The "insert" adds a block of object(data) in the

queue right after the last inserted object block. The

"remove" extracts the oldest object block which was inserted

in the queue.

Head Tail
---------------------------------------------------------------------------

I .> -> I
+--------------------------------------------------------------------------

(Insert Y) (Remove)

Figure 5.12 FIFO Queue
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The data transport operation is quite similar to the

connectionoriented subnetwork case. However, the queue

management is different, such as in the window queue to FIFO

queue.

5.8.3.4 Connection Termination

Because the SNPB does not represent the connection-

oriented subnetwork, the connection termination cannot

explicitly initiated by a local user. Instead, the inactive

state for reasonably long periods may cause the connection

termination. The long inactive state may have two causes.

First, the connection entities do not produce the data units

fast enough such as a terminal-to-host communication.

Second, the communication link is experiencing troubles such

as loosing data units, or the data unit cannot reach the

destination.
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5.9 PNB Specification

In the traditional half gateway design approaches,

the PNB is a protocol translation module between two or more

subnetwork protocols. However, in the generic gateway each

subnetwork protocols are already converted into the universal

structure and functions which can be interfaced to the PNB.

The two interconnected subnetworks may not be inter-operable

with each other because of the following reasons: 1) the

universal service functions are chosen from the super set of

the subnetwork protocol functions. Hence, some service

prLmitives do not exist on both subnetworks; 2) each

subnetwork may have different characteristics and

requirements. As the result, the PNB is introduced in the

generic gateway to provide a resolution on the subnetwork's

incompatibility. The functions are called protocol

negotiations.

5.9.1 PNB Services

As stated in section 5.5, the PNB functions are not

peer protocol functions since the services provided by PNB

are not protocol services. Basically, there are two types of

PNB services: link services and negotiation services.

5.9.1.1 Link Services

The link service provides a logical interconnection
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between two communicating SNPBs. For instance, an

internetwork user A on subnetwork A wants to communicate with

user B on subnetwork B, and a gateway resides in between

subnetwork A and subnetwork B. Then, the connection

requesting user 'A' sends a connection request to the

gateway. The subnetwork A side of SNPB sends the connection

indication to the PNB. The connection request is transferred

to the subnetwork B. Finally, the connection request is

transferred to the user B on the subnetwork B (Figure 5.13).

In the same way, other service primitives will be transferred

between interconnected subnetworks. The PNB manages the

logical interface between subnetwork protocol primitives. For

instance, when one of the subnetworks is connection oriented

subnetwork and the other subnetwork is a connectionless

subnetwork, then the connection request must be represented

and transferred as a data unit in the connectionless subnet-

work and vice versa.

User A SNPB PNB SNPB User B
ConInd +--------+ ConReq

I ConReq --------- >1 I---- >+ ConInd------- I.. ...+ +-------- +-- I--- +-------------

+-------------...+ +--- I-- 4---------+
V ConReq Conlnd ConReq V Conlnd

--------------- --------------+

Figure 5.13 Connection Request Service



5.9.1.2 Negotiation Services

The PNB provides two types of protocol negotiations.

First, there are static negotiations. The static negotiation

will be performed with each subnetwork's information which is

exported from each SNPB during the gateway initialization

step. The results cannot be altered during individual

protocol services, or communication sessions. If the result

of the static negotiation is a success, then the two subnet-

works can communicate with each other without degrading

internetwork services. if minor fixes are required, then the

two subnetworks will be interoperable with minor functional

limitations during operation. However, if the result is

failure then the gateway will halt and no further operations

are possible. The static negotiation case is shown here.

SNPBAInit -- -> Static +-- ------------- >

NetAInfo Negotiation I Success
==> PNBInit --------------+I

SNPBBInit ---------- > -I-
NetBInfo Fail

The second class of negotiation, identified as a dynamic

negotiation, is a connection negotiation, which may be

applied by individual connection entities. The dynamic

negotiation is completed by two phases: 1) during the
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connection initiation; 2) and during the connection comple-

tion:

Initial Secondary
Connection Negotiation Connection Negotiation Connection
Request ------------ > Response ------------- > Completed

More specifically, information on this dynamic negotiation

will be provided in the following sections.

5.9.2 PNB Connection Reference Structure

To identify the connection for each service

primitive, the connection reference table entry must be

maintained in the PNB. While each SNPB maintains individual

ConRef for each connection entries, the PNB links the ConRefs

of each SNPBs. For example, a connection between subnetwork

A and subnetwork B is referenced as ConRef A and ConRef B on

SNPB A and B. Then, the two ConRefs are linked by PNB as

PconRef. Figure 5.14 shows the case. Each subnetwork block

(SNPB) doesn't need to understand about the other side's of

connection status or information.
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------- -

I PconRef
S-+

------- - ---------- 4

ConRef ConRef
A B

+ +----------+
Connection Reference Connection Reference

SNPB A SNPB B

Figure 5.14 PNB Connection Reference

5.9.3 PNB Elements of Procedure

5.9.3.1 General

This section specifies the individual communication

entities on the PNB. The PNB functions are basically

decomposed into three classes: 1) SNPB primitive linking; 2)

connection establishment between subnetworks; 3) protocol

negotiation. However, the functions are not easily separable

from each other. Each functional element will be specified

by the chronological steps on each communication entity, such

as connection establishment, data transfer, and connection

termination phase.
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5.9.3.2 PNB Initialization Phase

During the gateway, initialization or specific reset

state of the gateway, the PNB initialization phase is

performed. During this phase the PNB receives all

subnetworks information from the SNPBs. With this

information, the initial subnetwork protocol negotiations are

performed. The information which is passed from the SNPB

supposedly is not altered during the operation of the

gateway, and the negotiation in this stage is called static

negotiation.

Static negotiation doesn't involve any protocol

service primitives or any communication entities. It only

depends on the subnetwork characteristic information.

However, the negotiation at this stage may be critical for

overall gateway operation. The failure of the negotiation

may result in a total failure of the gateway operation. The

negotiated protocol elements are decomposed into two groups:

i) Parameters and 2) Functions.

A few examples of the subnetwork protocol parameters

which may be used in the static negotiations are:

a) Time

- Min. packet delivery time,

- Max. packet delay time,

- Min. connection time,
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- Max. connection allowed time,

- Max. allowed idle connection time.

b) Packet Size

- Max. allowed packet size,

- Number of packets per messages.

c) Quality of Service,

d) Queue Size.

A few examples of the subnetwork protocol functions

which may used in the static negotiations are:

a) Connection establishment

- two way hand shaking,

- three way hand shaking.

b) Data transmission

- require acknowledgement,

- no acknowledgement required,

- windowed sequence control

- FIFO sequence control,

- blocking,

- segmenting.

c) Connection Termination Scheme

- one way

- two way (requires confirm).

The result of the static negotiation which is
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performed by procedure PNBInit may result in one of three

situations: 1) interoperable; 2) interoperable with minor

fixes; 3) non interoperable. When the result is either (1) or

(2), the gateway can continue the process to perform the

internetworking functions. However, if the result is (3) the

gateway may give up its function as a internetworking unit.

For example, if one of the subnetwork is local area network

which allows to wait for the acknowledgement for a packet

which was sent with maximum delay of milliseconds and the

other side of subnetwork is a long haul network and its

average turn around time is 30 milliseconds then the two

subnetworks have little hope to be interoperable. The result

may not be satisfactory unless there some special care be

provided.

5.9.3.3 Connection Establishment Phase

The connection establishment phase is responsible for

establishing the logical link between two communication

entities. This phase will be activated by receiving a

service primitive which can not found in the reference table.

More specifically, when a service primitive is received from

one of SNPBs and the ConRef of the primitive is not found on

the PNB connection reference table, then it may be the

connection initiating primitive. The connection initiating

service primitives are ConfndP, and DatalndP. When the

connection initiating subnetwork is a connection oriented
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subnetwork, then the ConIndP is applied. When the connection

initiating subnetwork is a connectionless subnetwork, then

DatalndP is applied.

As soon as the PNB receives the connection initiating

primitive from one of the SNPB, it performs the initial

negotiation. The initial negotiation is performed with the

static subnetwork information and the connection initiating

service primitive. This scenario is defined as follows:

PNBProtocoi [a,o,ds] (infa, infb: SNetInfo) exit
choice con:PConRef [) [con IsIn cons] ->

(* REQUEST FROM SIDE A *)
[nettype(infa) = connection-oriented] ->

ConindP[a](con jpkt);
Initial Negotiation(infa, infb, con Iresult);

([result = success] => ...
[]

[result = fail) =>
DisReq[a](con);
ds !con;exit

[nettype(infa) = connection less] ->

DataindP(a](con jpkt);
Initial_Negotiation(infa, infb, con Iresult);

[result success] => ...

[result fail] =>
ds !con;exit

[]
(* REQUEST FROM SIDE B *)

endproc (* PNBProtocol *)

process Initial Negotiation(infa, infb:Netlnfo, con:ConRef):
exit(Bool,ConRef)
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i:(infa,infb,con !result);

exit(result)
endproc.

If the initial negotiation is successful, then the

proper service primitive will be transferred to the

connection responding SNPB. The response of the connection

request may returned as a ConResP for connection oriented

subnetwork and AckIndP for a connectionless subnetwork. When

the PNB receives those service primitives the second

negotiation will be performed.

process WAITCONFIRM [a,b,ds] (infa, infb: SNetInfo,
con:PConRef):=

ConRes[b] (con Icon');
SecondNegotiation(infa, infb, con' result, con);

(I (result = success] - .

(result = fail] -> .

endproc.

process SecondNegotiation(infa, infb:NetInfo, con:ConRef):
exit(Bool,ConRef)

i:(infa, infb, con Iresult);
exit(result)

endproc

The initial negotiation is a negotiation between the

connection initiating node and the gateway, and the secondary

negotiation is a negotiation between the connection
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responding node and the gateway. Communication on the

connection link is possible when both negotiations terminate

successfully. If it terminates unsuccessfully, then the

connection will be released and no further communication may

be possible with that specific connection reference entry.

There are various connection establishment schemes.

However, in this specification only two schemes are

specified. Those are acknowledged data unit transmission on

connectionless subnetwork and two way handshaking scheme on

connection oriented subnetwork. The connection establishment

may involve the following sequence of service primitives

between SNPBs and PNB.
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(Source is Conn. oriented) (Destination is conn. oriented)

!nit
-> (-)CR -- >(4)CR --- > (-)CC --- > (+-)CC --->Connected

(1) (2)

-----------------------------------

(4-) DR

(a)

(Source is Conn. oriented) (Destination is connectionless)

Innit
--- > (-)CR --- > (+)Data -- > (-JACK --- > (+)CC -->Connected-

/1\ *\I/(') *\/\/(2
- - - - -- - - - --- - - ---

(+-) DR

(b)

(Source is Connectionless) (Destination is Conn. oriented)

Init
-> (-)Data --- > (- )CR --> (-)CC --- > (+)ACK -- > Connected

* \ 1 /(1) *\/ *\I/(2) *I
+--------- ------ ------- ---------

(c)

(Source is Connectionless) (Destination is connectionless)-

Init
-- > (-)Data -- > (+)Data -- > (-)ACK --- > (+)ACK -->Connected

/ 1\ *\ I / (1 ) *\ /* I/ (2) * I
+-------- ---- ------ ---------- +

(d)

Figure 5.15 Connection Establishment Phase (continued)
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(-) Receive SNPB Service Primitive
(-)CR: ConlndP, (-)CC: ConResP
(-)Data:DatalndP, (-)Ack: AckIndP

(+) Send SNPB Service Primitive
(+)CR: ConReqP, (+)CC: ConCnfP
(+)Data:DataReqP, (+)Ack: AckReqP
(+)DR: DisReq

(1) Initial Negotiation
(2) Secondary Negotiation

*- Any incomplete connection causes such as
- timeout,
- Disconnection reauest,

- negotiation failure
- etc.

Figure 5.15 Connection Establishment Phase

5.9.3.4 Data Transfer Phase

The data transfer phase of the PNB is straight

forward. This is because the flow and error control are

expected to be provided by the subnetwork (SNPB). The data

unit transfer from one SNPB to the other SNPB can be done by

receiving a data unit from one of SNPB as a DataIndP, and the

data unit is sent to the other SNPB as a DataReqP. Then the

PNB refuses to receive any further data units unless

previously sent data unit is acknowledged from the data unit

destination side SNPB. When the acknowledgement of the data

unit is received as an AcklndP from the data unit destination

SNPB, it is sent to data unit source SNPB as an AckReqP. The

PNB is ready for next data unit transfer and so on. The data
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transfer cycle is as:

DataIndP --- > DataReqP --- > AcklndP --- > AckReqP.

5.9.3.5 Connection Termination Phase

When PNB receives a connection termination service

primitive from one of SNPBs, the primitive will be trans-

ferred to the other SNPB and the connection reference will be

removed. However, a connection with connectionless

subnetwork will experience some difficulty in termination,

because there are no explicit connection termination service

primitives on the connectionless subnetworks. As the result,

the number of connection references will grow indefinitely.

This condition is very unpleasant especially when the two

SNPBs are connectionless subnetworks. In one solution of

this difficulty, the connection may be removed by a time-out

condition. When there are no interactions between

communication entities for specific period, the connection

may be assumed broken or terminated and the connection

reference may be released.



CHAPTER 6

GENERIC GATEWAY TESTING BY CLIPS

6.1 Introduction

During the last decade, many protocol verification

techniques have been developed and studied. However, most

verification techniques are limited to the simple protocols.

Real protocol verification has not been achieved. One of the

most significant limitation on the tradition verification

techniques is caused by the exhaustive methods which they

relied on. For instance, if there is a simple protocol which

requires 10 state transitions from initial to final state,

and at each state there are two possible next states. The

total number of possible paths between initial to final state

become 1024. If the protocol involves time dependency, then

verification become almost impossible, because the time

constraint may not be a bounded property. In this section,

an alternative verification technique is proposed which is

called a Verifiable Testing (VT) Scheme.

As Groz [GRO 873 stated, the simulation may not prove

the total protocol correctness by any means. However, it may

123
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provide enough confidence to the protocol designer. In most

cases, the confidence is enough during protocol design phase,

especially when no total verifications are possible due to

the complexity of the protocol. The scheme VT uses a

simulation techniques during verification.

During the VT study, some beneficial points of

simulation are discovered. They are:

1. The verified system's behavior can be monitored in
real-time. A specifier can easily understand
what actually happens when the system is incorrectly
specified. The result is that solutions of the problems
can be easily sought.

2. The model of the system is an executable system so that
any modification on the specification can be directly
examined.

3. It does not rely on the exhaustive state exploration by
which verification of a complex system is possible.

4. The protocol specifier can expect short turn around time
during the refinement of the system.

The CLIPS is used as a VT Tool. CLIPS was developed

by the Mission Planning Group at NASA, Huston. CLIPS stands

Eor 'C' Language Production System. A short introduction of

the CLIPS is introduced in the following section.

In the VT method, the verification is based on the

mechanism for observing internal states and interactions in

the system simulation. The verification is performed by one
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or more processes called testers or observers, that run

concurrently in the system.

From our work, CLIPS was found adequate to test the

most important communication system's properties. These

properties included the following:

a) Non procedural characteristics of CLIPS are adequate to

represent the communication system's characteristics such

as concurrent, non-deterministic, and synchronous

communication.

b) Testing the invariant property of a system is fairly

easy.

c) Deadlock or unspecified specification can be detected.

d) Conversion of the LOTOS specification to CLIPS is almost

straightforward.

e) CLIPS is an executable language.

f) Some intelligence can be easily implemented and tested

which is desirable for the generic gateway.

6.2 Introduction to CLIPS

The CLIPS has two major properties, rules and facts

[CLIPS 87a) [CLIPS 87b]. Each fact represents a piece of

information. The rule is an atomic entity which has a

condition part, left hand side (LHS), and an action part,
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Figure 6.1 CLIPS Structure
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right hand side (RHS). When the condition part satisfies the

rule become activated and fired. The basic execution cycle

is as follows (CLIPS 87a] (see Figure 6.1):

a) The facts list is examined to see if any rules conditions

have been met.

b) All rules whose conditions(LHS) are currently met are

activated and placed on the agenda (list of active

rules). The agenda is essentially priority stack.

c) The top (highest priority) rule on the agenda is selected

and its RHS actions execute. As a result of RHS actions,

new rules can be activated of deactivated. This cycle is

repeated until all rules that can fire have done.

The CLIPS is modified (from CLIPS V.4.1) to create a

suitable environment for the discrete event simulation. One

of the most important modification is in a time dependency on

facts. With the modification of CLIPS, the facts can be

created with or without delay. If facts are created without

delay, the facts can be used immediately. If facts are

created with delay, the facts only can be used after the

specified delay. Currently usable or accessible facts are

called as active facts and not usable facts are called as

delayed facts. The delayed facts are created by 'delay-

assert' operation with a delay value. The delay value means

that the system requires the specified time delay to produce
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the fact. The delayed facts will be active facts after

specified time delay.

The modified basic execution cycle is as follows (see

Figure 6.2):

a) The facts list is examined to see if any rules conditions

have been met.

b) All rules whose conditions(LHS) are currently met are

activated and placed on the agenda (list of active

rules). The agenda is essentially priority stack.

c) The top (highest priority) rule on the agenda is selected

and its RHS actions execute. As a result of RHS actions,

new rules can be activated of deactivated.

d) If the AGENDA is empty, then one or more delayed facts

are activated (become active facts) until any rules can

be activated or the delayed facts list become empty.

e) This cycle is repeated until all rules that can fire have

done and no more delayed facts available.
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6.2.1 New functions

Various modifications and extensions were made to

CLIPS. First the following capabilities are eliminated;

embedded editor, extended math functions, and online help

utility. Secondly, the code has been recompiled to make a

more compact code. As the result more free memory space

become available for the testing environment which is

critical in the PC environment. A a few new functions are

implemented. They can be grouped as, window manager

routines, extended list processing functions, and delayed

assertion. These are described below.

6.2.1.1 Window management

The window management has been implemented on the

original NASA version of CLIPS (V. 4.1). However, entire

window management routines are implemented independently, for

the following two reasons. First, when this project was

started the source code of the window routines was not

available. The compiled version of the CLIPS did not support

the proper user interface. Secondly, our window routines

takes less memory and easy to use. The window management

functions are presented as bellow:

Note: Variables can be identified by a symbol '?' or '$?'

When the variable name starts with '?' it means that it

is a single valued variable. When the variable name
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starts with '$?' it means that it is a multiple valued

variable (List).

(clear-screen) - Erases entire screen.

(clear-window) - Erase specified window area.

(window-on), (window-off) - Activates or deactivates window

dependent routines.

(set-window <?name> <?color> <$?window-area>) - Creates a box

around window area with a window name on top left

corner of the window.

<?name> - Window name and it can be used as a window

object identification.

<?color> - Background color of the specific window. Legal

colors on PC environment are:

BLUE, RED, GREEN, BLACK, WHITE, YELLOW.

<$?window-area> - Boundary of the specific window and it

must be multi-valued variable. It must have

exactly four number valued elements. The each

element represents screen coordinates (x-min,

y-min,x-max, y-max) of window region.

ex: (set-window Sender BLUE $?my_win)

(wprintout <?field> <?linepos> <?string> <?name>) - Prints

at most two elements at the <?linepos> on the window,

first one is a field name and the second one is a

content of che field.
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<?field> - It can be used as a field name on the

window. This field may be suppressed by

using empty string ("").

<?linepos> - It specifies a line position for the text

in that specific window. It must be integer

type.

<?name> - Identifier of the window object. The name

must be pre-defined by 'set-window' command.

ex: (wprintout Send 1 "Data Request" Sender) prints

"Send: Data Request" at 1st line of the

specified window "Sender".

(move-to <?x-pos> <?y-pos>) - Moves current cursor to new

location.

<?x-pos> - x coordinate on the screen.

<?y-pos> - y coordinate on the screen.

ex: (move-to 0 0) moves cursor at top left corner.

(show-windows) - It prints all window objects which are

defined by 'set-window' command. An example of

output format is:

(Sender 1 1 10 10)
(Receiver 40 1 70 10)
2 Windows are defined



133

6.2.1.2 List management routines

CLPS has various useful list management functions.

However, some difficulties have been experienced. The

following new routines are implemented as a result.

(get-value <?Key> <$?list>) - When the <?Key> is found in

<$?list> it returns an element which follows <?key> in

<$?list>.

<?Key> - Key for searching value.

<$?list> - multiple valued variable.

Ex: Suppose current multiple variable $?packet has

elements, ($?addresses $?options DATA msg

$?other).

(getvalue DATA $?packet) returns 'msg'

Note: The "getvalue" is useful when a specific

information needs to be extracted without

specifying the exact location of the information

in the list. In this specific example content of

data field (msg) in the packet is extracted by a

key word "DATA".

(add-atom <?elm> <$?list>) - It appends new element <?elm>

in the <$?list>. It appends <?elm> only if <?elm> is

not pre-exist in the <$?list>.

<?elm> - New element to be inserted.

<$?list> - multiple valued variable (list).
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Ex: Suppose a list '$?colors' has (red blue black).

(add-atom green $?colors) will changes the

contents of $?colors into (red blue black green).

(rem-atom <?elm> <$?list>) - It removes <?elm> from

<$?list> only if it exist in <$?list>.

<?elm> - Element to be removed.

<$?list> - multiple valued variable (list).

Ex: Suppose a list '$?colors' has (red blue black).

(rem-atom blue $?colors) changes the contents

of $?colors into (red black).

(swap-atom <?first> <?second> <$?list>) - Exchanges the value

of elements between <?first> and <?second> position in

<$?list>.

<?first>, <?second> - number valued elements but 'end'

can be used to identify the last position of the

<$?list>.

Ex: Suppose a list '$?colors' has (red blue black).

(swap-atom 1 end $?colors) changes the contents

of $?colors into (blue black red).

(mstr-cat <element> (<element>..) - It concatenates two or

more elements together and returns as a single string.

The each elements are separated by single space.

<element> - It may single or multiple valued variable.
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Ex: Suppose a list '$?colors' has (red blue black).

(mstr cat Color List: $?colors) returns with a

string type value 'Color List: red blue green'.

6.2.1.3 Storage management

In CLPS, the data storage elements are limited to

facts. In many occasions, the facts are not suitable for the

VT operation. For instance, the following buffer history

invariant test rule may be locked in an infinite loop.

(defrule BufferHistoryTest
(Packet ?data)
?x <- (Buffer $?list)

(retract ?x)

(assert (Buffer $?list ?data))

From the above example, the 'BufferHistoryTest'

creates a new fact (Buffer $?list) during its execution. The

fact activates 'BufferHistoryTest'. And the rule creates a

new (Buffer $?list) and so on. As the result the

'BufferHistoryTest' will be locked in an infinite loop. As

a solution of this problem a new storage management method is

provided. Two types of storage elements are provided

'record' and 'var'. The storage type identified as a

'record' is a multiple element variable which can be accessed

globally. The storage type identified as a 'var' is a single

element variable and it also can be accessed globally. With

these, the above example may avoid infinite loops. The above

example may rewritten as the follow.
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(defrule Buffer History_Test
(Packet ?data)

(record Buffer ?data))

The new group of functions are as follows.

Multi-valued variable (record):

(create-record <?name> (<element>}) - It creates a list

and the contents of the list can be accessible by

the name of list.

<?name> - Identifier of the list structure.

(<element>} - Initial elements of the list. Each

element may single or multiple valued variable.

ex: (create-record Queue dataO datal)

(record <?name> (<element>}) - It appends <element> to the

list.

<?name> - Identifier of the list structure.

(<element>} - Initial elements of the list. Each

element may single or multiple valued variable.

ex: (record Queue data2)

(show-records) - prints all records created during program

execution and their contents.

ex: (show-records) prints

(Queue dataO datal data2)

I records are defined.
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(recall-record <?name>) - It returns the contents of record

<?name> as a single string value. The each elements in

the list are separated by a space.

ex: (recall-record Queue) returns "dataO datal data2".

(compare-records <?namel> <?name2>) - It returns the last

position where the two records has the same valued

elements.

ex: Suppose a record Sender has (datal data2 Data3) and

a record Receiver has (datal data2 data4) then:

return value of (compare-records Sender Receiver) is

2.

(reset-record <?name>) - It frees all elements in record

<?name>.

(length-record <?name>) - It returns length of record

<?name>.

Single-valued variable (var):

(set-var <?varname> <?value>) - If a variable identified

<?varname> is already exist in variable list then put

the <?value> to the variable. Otherwise create a

storage for the variable and set the variable value to
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<?value>.

ex: (set-var LastTest OK)

(get-var <?varname>) - It returns the value of the variable

which identified <?varname>.

ex: (if (eq (get-var LastTest) ERROR)) then

(printout ERROR))

(show-vars) - It prints all currently defined variable names

and their values.

ex: (show-vars) will prints

(Last-test OK)

1 variables are defined

6.2.1.4 Time Constraint Related Routines

The following routines are provided to support time

dependency to the CLIPS. More detailed description will be

given in the section 6.2.2.

(delay-assert <?Object-name> <?delay> <fact>): It creates a

fact <fact>. But the fact is not usable unless

Isys_time' is progressed by <?delay>.

ex: (delay-assert Sender 5 DataInd dataO) will creates a

fact (Packet dataO) after 5 units delay.

(show-systime): It returns current value of sys_time.
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(show-dfacts): It prints all facts which are created by

'delay-assert' but they are not activated yet.

An example of output format is:

(Sender 10 10 DataInd genlO)
(Receiver 11 10 WaitAck)
2 facts are waiting

(Sender 10 10)
(Receiver 10 10)
2 objects are defined

The first group shows all facts which are waiting for

activation. The first element represents a name of an

object which creates the fact. Second and third

elements represent the activating time of the fact and

base time of the object. The remainder are fact

values. The second group shows all objects which are

created. First element represents a name of object. The

other two elements represents a global time and local

time of each object.

6.2.1.5 Other Functions

(restart) - The function is a combined functions of (release

-mem), (reset), and (run).

(watch rules) - It prints currently fired rule name. When

window flag is on the rule name is printed on left

bottom of the screen.
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(watch-agenda (on/off)) - It is only effective when the

window flag is on. A window named 'AGENDA' is created

on right bottom corner on the screen. The window

contains all rule names in the agenda (activated rules

list).

(rand) - It returns with a random number.

Ex: (bind ?new (rand))

(max <element> (<element>}) - It returns the largest value.

Ex: (max 1 4 $?nums) will returns 4 if all elements of

$?nums has smaller value than 4. Otherwise it will

returns the value of largest valued element in $?nums.

(min <element> (<element>)) - It returns the smallest value.

Ex: (mix 1 4 $?nums) will returns 1 if all elements of

$?nums has larger value than 1. Otherwise it will

returns the value of smallest valued element in $?nums.

Another interesting modification on the CLIPS is a

speed control capability. If window flag is on by the

"(window-on)" command the following key strokes will change

the speed of the execution.

S: slows down the speed of execution.

F: increases the speed of execution which reduced by
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the 's' keys.

C: returns to full speed.

<space>: changes the execution to single step mode. And

any key input except 'c' leads one cycle of rule

execution.

The single step operation will be returned to full

speed by 'c' key stroke.

6.2.2 Delay Assertion

When a function 'delay_assert' is called, a new fact

is created but it is not linked to the pool of facts (facts

list). Instead, it is stored in the temporary list until no

rules are found in agenda. If there no rules in the agenda,

then one or more delayed facts will be linked to the main

facts list until any rule can enters to the agenda or the

temporary list become empty. The temporary list is

maintained by the chronological order to make sure that the

facts are activated in order. Since the communication

systems involves more than objects which operate in parallel,

each object may requires to maintain its own time base. The

time base must be updated independently. The time bases of

objects must be synchronized to a global clock. To aid in

the understanding of the delayed assertion function, a simple

communication system is provided bellow.
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Suppose there are two objects called 'SenderA' and

'SenderB' and one object called 'Receiver'. The senders

create and send a series of packets to the 'Receiver'. The

'Receiver' receives the packets from both senders. Now

'SenderA' is responsible to send a series of packets at

every time interval but 'SenderB' is responsible to send a

series of packets at every other time interval. Then the

simple communication system can be represented as bellow.

(deffacts Test
(senderA)
(senderB)
(receiver))

(defrule senderA
?f <- (senderA)

'retract ?f)
(assert (data A))
(delay-assert SenderA 1 senderA))

(defrule senderB
?f <- (senderB)

(retract ?f)
(assert (data B))
(delay-assert SenderB 2 senderB))

(defrule receiver
?f <- (data ?src)
(receiver)

(retract ?f)
(printout "DATA Received from " ?src crlf))

The interactions between two senders and a receiver

are listed in Figure 6.3. The first field represents timer
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values. First column labeled as 'S' is a global system time.

And second and third columns which labeled as 'A' and 'B' are

local time on sender 'A' and 'B' respectively. The second

field represents a delayed facts list which temporary stores

any facts created by 'delay-assert' function. The value

'(A4)' means a fact "(SenderA)" which suppose to be activated

when the system clock reaches 4. The third field represents

content of agenda, viz. list of currently activated rules.

The fourth field represents a name of currently fired rule.

'A' means SenderA and 'B' means SenderB. The last field

represents the action of the receiver when current rule 1-s

fired, in this case the received packet is represented.

The initial facts which are created by deffacts

'Test' (which defines facts), two rules 'senderA' and

'senderB', are activated and fired. Mean while, senderA and

senderB generate facts (data A) and (data B). The facts

activates a receiver and the facts are consumed by the

receiver. Because the facts are immediately available there

no progress on system clock has been made. Then, the AGENDA

becomes empty. During the rules execution two delayed facts

are created which has delay value 1 and 2 by senderA and

senderB. The empty AGENDA forces to activate a delayed fact

(data A) which has smallest time value. Then the system

clock is updated to i. During the system clock is 1 the rule

'senderA' is inserted in the AGENDA and fired by the
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activated fact (senderA). The rule generates a message fact

(data A) and delayed fact (senderA). Like the previous step

the fact is consumed by a rule receiver and the (senderA) is

inserted in the delayed facts list. Again the AGENDA becomes

empty. This causes an activation on delayed facts, in this

case (senderB) is selected because it has the smallest time

value and also it was created before (senderA) which has the

same time value. The fact activates 'senderB' and the system

time is updated to '2', and so on. As the result, receiver

receives a series of packets from 'senderA' and 'senderB'.

And the packet generation ratio between 'senderA' and

senderB' can be maintained by 2:1.

More detailed CLIPS will not be discussed in this

paper however they can be found from (CLIPS 87a] and [CLIPS

87b].
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.,+----------------------4------------+----------

I S A B I (Qa) (Qb) Agenda I Fired IReceived I
4-------------------- ---------------------------------------

0 - -I - - (a,b) I - I - I
----- ------------------------------- -+----------------+----------------

0 - 0 1 - (B2) I (a) I B I (Data B) I
+--------+----------------+------------------+-----------------+----------------

0 0 0 (Al) (B2) - A I (Data A)
S+-------------------------------+-----------------+----------------

1 1 0 (B2) (a) I - I -
+-------4---------------+------------------+------------------+------------------

I 1 1 0 1 (A2) (B2) - I A I (Data A) I
+--------- 4 --------------------------------------------------
I 2 1 2 i (A2) (b) I - I -
----- -------------- +----------------+------------------+----------------

2 1 2 1 (A2) (B4) - I B I (Data B) I
+--------+----------------+------------------+-----------------+----------------

12 2 21 - (B4) 1 a) I - I -
+----------4-------------1----------------+------------------+------------------

I 2 2 2 1 (A3) (B4) J I A I (Data A)
------------------------ +------------------+------------------+------------------

I 3 3 2 (B4) I (a) I - I -

4. - -- -- - - - + -- - - - - -- - - - - -- - - ------------ +------------------------------------+
3 3 2 I (A4) (B4) - A I (Data A)

4 3 4 (A4) (b) I -
-- -- -- -- - +------------------------+---

Figure 6.3 Delay Assertion
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6.3 Verifiable Test Scheme

The verifiable test system has a three level

hierarchical structure. From the base, there is a model of

tested system, a tester, and a verifier. The model

represents the system's behavior. The tester monitors the

model, it also referred to as an observer. One of the

important behaviors of the tester is in the disjointed

operation to the tested system. This means that the tester

should not disturb the behavior of the tested system by any

means; such as any shared variables or messages should not be

allowed between model and tester. Finally the verifier can

be either a set of processes or a human verifier. It is

responsible for the followings:

1. Validation of the result of test process.

2. Monitoring the misbehavior of the system when it is
encountered.

3. Management of the test environment.

4. Analysis of the misbehavior of the system.

5. Diagnosis on the causes of misbehavior of the tested
model.

The importance of the verifier forces us to select an

Al language as a VT tool. The relation between the three

level is illustrated Figure 6.4. As an example of the VT,

Alternating Bit Protocol (ABP) verification is given in the

following sections.
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GW

[ Model

fi

Testfer fI"'

Figure 6.4 Hierarchical Structure of VT System

6.4 Alternating Bit Protocol

Alternating Bit Protocol(ABP) is a simple

communication protocol between a pair of nodes, a sender and

a receiver. The communication by ABP is unidirectional, such

as only sender node is allowed to send a series of messages.

The flow and error recovery is controlled by a single bit

information on each nodes. Which called a 'bit' and an

'ack' at sender and receiver respectively. The bit value '0'

implies that the sender is ready to send or in process of an
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even ordered message block. The ack value '0' implies that

the receiver is expecting to receive an even ordered message

block. As the same way the "bit", "ack" valued 'I' implies

that the sender and receiver is currently managing an odd

ordered message block.

The formal specification of ABP by Sunshine[SUN 8381

ts as below (Figure 6.5). The symbols which ending with '0'

implies that it is related to an even ordered message. And

the symbols which ending with '0' implies that it is related

to an odd ordered message. For example, Sender state SO

generates an even ordered message. Receiver state AO replies

an acknowledgement by notifying that it is expecting to

receive an even ordered message and so on.

CO::= sendO WO SO::= ReceiveMsg0
WO::= ReceiveAckl Sl <give message to user>
Al
ReceiveAckO CO ReceiveMsgl AO
Timeout CO ReceiveMsgError AO

AO::= SendAckO SO

Sl::= <get message> Cl
Cl::= sendO Wl Sl::= ReceiveMsgI
WI::= ReceiveAckl SO <give message to user>
AO

ReceiveAckO Cl ReceiveMsgO Al
Timeout Cl ReceiveMsgError Al

Al::= SendAckl SI

(a) Sender (b) Receiver

Figure 6.5 Alternating Bit Protocol in Formal Grammar
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6.4.1 Protocol Model Specification

Conversion from formal specification to CLIPS

representation is quite straightforward. In Figure 6.6, some

modifications are made to reduce the number of rules. As the

result the state SO and S1 can be represented by a single

rule 'sendercen_pkt' with different 'bit' value, and so on.

The state variable of formal specification is

represented as a fact in CLIPS specification. For example

the state of sender 'SO' in formal specification can be

represented by a fact (Sender GenPkt 0) in CLIPS. If the

fact exist the rule 'sendergenpkt' will be linked in the

AGENDA and it can be fired. During its execution the fact

which activates the rule, (Sender GenPkt 0) is removed and

new facts are created. They are (SenderBuf ?msg) and (Sender

SndPkt 0). The (Sender SndPkt 0) implies that the next state

of sender will be 'sendersend_pkt' or 'CO' in formal

specification. And (SenderBuf =(gensym)) is a message which

will be sent during the next state and its message content is

an internally generated symbol. The message passing between

sender and receiver is the same mechanism as above. Such as

a message created by a sender is a fact which would be

retracted by a receiver. For instance a message -(DATA ?msg

?bit) is created by the sender in state 'sendersend_pkt' and
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it is consumed by the receiver in either 'receiver wait_pktl'

or 'receiverwait_ pkt2' state.

As noticed, three 'delay-assert' are found in Figure

6.6, from 'sendergen pkt', from 'sender-sendpkt', and from

'receiver_ waitoktl'. The 'delay-assert' creates a special

fact which will be available only after specified time units.

For instance (delay-assert Sender ?gentime Sender SndPkt

?bit) implies that the sender takes ?gentime units of

interval to produce a message. After the delay the sender

will be in the state (Sender SndPkt ?bit). The time

dependency of the ABP specification can be achieved by

'delay-assert'.
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(defrule sendergenokt " Generate a packet"
?fx <- (Sender GenPkt ?bit)

(retract ?fx)
(assert (SenderBuf =(gensym)))
(delay-assert Sender ?gentime Sender SndPkt ?bit))

(defrule sender _send pkt " Send a packet
?fx <- (Sender SndPkt ?bit)
(SenderBuf ?msg)

(retract ?fx)
(assert (DATA ?msg ?bit))
(assert (Sender WaitAck ?bit))
(delay-assert Sender ?timeouc SenderTimer))

(defrule sender wait ackl "Receive expected ack."
?fx <- (Sender WaitAck ?bit ?time)
?fy <- (ACK ?ack&:(neq ?ack ?bit))
?fz <- (SenderBuf ?msg)

(retract ?fx ?fy ?fz)
(assert (Sender GenPkt =(mod (+ ?bit 1) 2))))

(defrule sender wait ack2 "Receive unexpected ack."
?fx <- (Sender WaitAck ?bit ?time)
?fy <- (ACK ?ack&:(eq ?ack ?bit))

(retract ?fx ?fy)
(assert (Sender SndPkt ?bit)))

(defrule sender timeout "Timeout reached"
?fx <- (Sender WaitAck ?bit ?time)
?fy <- (SenderTimer ?msg)

(retract ?fx ?fy)
(assert (Sender SndPkt ?bit)))

(a) Rules for Sender

Figure 6.6 ABP Protocol in CLIPS Representation (Continued)
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(defrule receiverwaitpktl "Receive expected msg. block"
?fx <- (Receiver WaitPkt ?ack)
?fy <- (DATA ?msg ?bit&:(eq ?ack ?bit))

(retract ?fx ?fy)
(assert (ReceiverBuf ?msg))
(delay-assert Receiver ?consumetime

Receiver SndAck ?bit)))

(defrule receiver wait pkt2 "Receive unexpected msg. block"
?fx <- (Receiver WaitPkt ?ack)
?tx <- (DATA ?msg ?bit&:(neq ?ack ?bit))

(retract ?fx ?tx)
(assert (Receiver SndAck ?ack)))

(defrule receiver snd ack "Sends an ack."
?fx <- (Receiver SndAck ?ack)

(retract ?fx)
(assert (ACK ?ack))
(assert (Receiver WaitPkt ?ack)))

(b) Rules for Receiver

Figure 6.6 ABP Protocol in CLIPS Representation

To make the protocol model realistic, the third

communication entity, a channel is introduced. The channel

is a communication path between a sender and a receiver. The

channel may involves errors such as corrupted or lost

message. Also it has a propagation delay. The simplified

channel is represented in Figure 6.7. By the introduction of

channel entity the structure of the messages need to be

changed. Such as (DATA ?msg ?bit) have to be changed to

(SndDATA ?msg ?bit) at sender, and to (RcvDATA ?msg ?bit)

at receiver. And also (ACK ?ack) have to be changed to

(Snd ACK ?ack) and (RcvACK ?ack) on sender and receiver
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respectively.

(defrule channel "Message channel"
?fx <- (SndDATA ?msg ?bit)

=>

(retract ?fx
(if (not ?lost)) then

(delay-assert ChannelD ?delay RcvDATA ?msg ?bit))

(defrule channel2 "Ack channel"
?fx <- (SndACK ?ack)

(retract ?fx)
(delay-assert ChannelA ?delay RcvACK ?ack))

Figure 6.7 Communication Channel

6.4.2 Tester

From previous sections a time-dependent ABP

specification with CLIPS is presented. In this section the

verification technique with CLIPS will be introduced.

Basically the verification involved a list of properties such

as functional correctness, safeness and liveness. Functional

correctness means that the system provides the services what

it is intended to do. Safeness means that no bad thing

happen. It includes deadlock and tempo-blocking freeness.

Deadlock is a state in which all processes are blocked

forever. Tempo blocking or livelock is caused by a

nonterminiating loop of states in which no final state can be

reached. Another useful property is a Liveness, which states

that either some event in the system is enabled or the system
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is in final state.

6.4.2.1 Functional Correctness

The functional correctness of the ABP protocol can be

stated by verifying the following properties:

1. All messages which sent by a sender are received by
a receiver.

2. The messages which received by receiver must be in the
same order as the sender generated.

For the functional correctness validation the

invariant test on buffer history is used. During simulation

the tester monitors the message generation and consumption at

sender and receiver respectively. The test rules for buffer

history are:

(defrule Buf Sender
(SenderBuf ?msg)

(record S Buffer ?msg))

(defrule Buf Receiver
?fx <- (ReceiverBuf ?msg)

(retract ?fx)
(record R Buffer ?msg)
(if (> (length-record R Buffer)

(compare-records SBuffer RBuffer))
then

(assert (ERROR History)))

The rule 'BufSender' records all messages which

generated by the sender on a list of buffers called

'SBuffer'. The rule 'Bur Receiver' records all messages
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which accepted by the receiver on a list of buffers called

'Rbuffer'. The rule is also responsible to check whether

or not the history buffers 'SBuffer' and 'RBuffer' have the

same contents.

6.4.2.2 Safeness

Deadlock conditions can be easily detected. If the

system reaches a deadlock state then the protocol will

terminate at the non final state. Because the ABP is non

terminating protocol, an artificial final state must be

provided. In our case the terminal conditions will be

selected by verifier which will be discussed in the section

6.4.3.

The ABP is a cyclic protocol by that tempo blocking

freeness can be validated by showing that in each cycle some

productive work be produced. The productive work means a

mpqage block transport from the sender to the receiver. In

the following rule the packet generating state of sender,

(Sender GenPkt ?bit), is selected as a cycle monitoring

position. The progressiveness of the ABP can be shown by

monitoring the number of messages which transferred from

sender to receiver within a cycle. The number of messages

must be exactly one. Otherwise there is a tempo blocking

error or progressive error.

(defrule TempoBlocking
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(Sender GenPkt ?bit)

(if (neq (length-record R Buffer)
(+ (get-var LastCycle) 1))

then (assert (ERROR Progressive))

(set-var LastCycle (length-record RBuffer)))

6.4.3 Verifier

While the above tester validates a protocol on a

single case of operation, the verifier tries all possible

cases. In this specific APB protocol verification, a few

timing constraints are used as the validating domain.

I. Sender packet generation delay.

2. Sender timeout value for an acknowledgement.

3. Delay for receiver to consume the message.

4. Communication channel propagation delay.

Each time constraint domain is give by a upper and a

lower limit. Within the limit every possible combinations of

the time constraints are tested whether or not the system

operates properly. The verification by simulation may not be

economical solution if the verification requires to validate

all cases in the domain. Because it also experiences the

explosive number of cases. By that the heuristic or

intuition should be used to limit the number of tested cases.

For instance in this ABP verification as an example, if a

protocol is invalidated with a communication channel delay n,
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then the protocol is more likely to operate incorrectly with

the delay m (n < m). By the intuition above the test case

with channel delay m can be eliminated. If verifier has more

intuitions or knowledge on the verified system then less

efforts are required to verify the system.

Because the ABP is. a non-terminating cyclic protocol,

one or more terminating conditions must be provided. One

simple terminating condition is a number of packets which

transferred from sender to receiver. it may be defined as a

domain which is bounded by a lower and an upper limited.

Secondly, the maximum number of lost message or

acknowledgement and retransmissions within a cycle can be

used as a terminating condition.

Due to the limited space, the actual inference rules

for the ABP will not be provided in this report.

6.4.4 Test result

Two types of results can be expected. First, the

result can be observed during test from screen. Secondly,

the result can be collected from the log file. One typical

screen is illustrated in Figure 6.8. The screen will be

partitioned into a number of areas which called windows.

First, the current status and actions on each communicating

entities can be found from a number of windows which labeled
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by communication entity names such as 'Sender' and

'Receiver'. In this particular example, the sender window

provides the following information: it is in state

'Send_packet'; its current bit value is 1; local time is 22;

and the last action of sender was sending a message, gen6.

Under the communication entity windows there is a window

'History', which reveals the current history of message of

sender and receiver. Current test results are displayed in

the 'Test' window. In the window 'INFO' current setup or

conditions of test are displayed. On the right lower corner

there is a special window called 'AGENDA'. In here all

activated rules are displayed by that the next status of the

system can be easily predicted. The window 'AGENDA' can be

disabled. Finally at the bottom line a name of curreit rule

which fired last time and system clock value are displayed.

The observation from screen is quite useful to

understand the behavior of the system. However the results

of the tested sessions need to be recorded in a file for the

post analysis.

The ABP is proven as robust on timeout or lost in

messages and acknowledgements. But, it failed when the

channel propagation delay for the message or the

acknowledgement are not fixed. The messages are propagated

by more than one path which may have different speed. An
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examole of the misbehavior is illustrated in Figure 6.9 which

is extracted from test logfile. In Figure 6.9, the sender

message generation delay is 2 (units), sender timeout for an

acknowledgement is 6, receiver message consume delay is 2,

and channel propagation delay is selected randomly between 0

-to 5. Due to the timeout for an acknowledgement the sender

sends the message (genl 0) twice at system time 2 and 8. And

the receiver receives the first message (geni 0) and sends

back an acknowledgement back (Ack 1). Then the sender sends

the second message (gen2 1). The receiver sends an

acknowledgement (Ack 0) for (gen2 1). At the moment the

resent message (gen. 0) is finally received by receiver

because it took more delay than (gen2 1). Erroneously the

receiver accepts (genl 0) for the next expected message,

because the receiver waiting for an even ordered message.

The protocol failure is detected by buffer history invariant

test.
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Sender Data Channel RTleceiver-

[ Time: 22 [Rcv: en Fie: .-

St: SndPkt 1Ack -Channel S___:__________

Bit, 1 [RCV: k
SNO: gen6 1Ak

-His tory[Sender: geni gen2 gen3 gen4 gen5 gen6
Receiver: geni gon2 gen3 gen4 gen5

[ISORY: Match

-AGENDA__________ _

Senderlnfo: OEM-DELAY 2 TIMEOUT 65 'utDaaLs-
ReceiverInfo: CONSUME 2 .utDaao2
Channellnfo DELAY N Mg.Channel-win

Msg..Channe 1

FIRE: 138 Sender Send Pict Sys-.time 22

Figure 6.8 ABP Test Screen
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ABP TEST

SenderInfo: GEN-DELAY 2 TIMEOUT 6
ReceiverInfo: CONSUME 2
ChannelInfo DELAY 0 to 5

RESULT: FAIL Reason: History

History(Sender) = genl gen2
History(Receiver) = genl gen2 genl

2 Sender(0) ----- > (genl 0)------
2 > (genl 0) ----- >
3 ----- > +(genl 0) ----- > Receiver(0)
5 <----- (Ack 1) < ------ Receiver(l)
5 <-------(Ack 1) < -----
8 Sender(0) < ----- (Timeout 2)
8 Sender(0) ----- > (genl 0) ----- >
8 ----- > (genl 0) ----- >
8 Sender(0) < ------ +(Ack 1) <-----

i0 Sender(l) ----- > (gen2 1) ----- >
10 > (gen2 1) ----- >
I ----- > +(gen2 1) ----- > Receiver(l)
13 < ----- (Ack 0) < ----- Receiver(0)
13 ----- > +(genl 0) ----- > Receiver(0)
13 LostAck (0) < ----

Figure 6.9 Example of ABP Test Logfile

6.5 Overview of the Generic Gateway Test Environment

The generic gateway test system includes three level

hierarchical structure. They are tested model, tester, and

verifier. The tested model includes a generic gateway

communication channels and users on each subnetworks. The

tester monitors the behavior of the tested system. Finally,

the verifier establishes test scenarios during test session
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and it analyzes the result of each tested cases.

6.5.1 Generic Gateway Test Model

The gateway test model includes 7 modules, two users,

two channels, two SNPBs, and a PNB. The user modules are

simple communication nodes which reside on each subnetworks.

The user module is connected to the SNPB through a channel.

Finally, the PNB interconnects the two communicating SNPBs

(see Figure 6.10). The SNPB and PNB modules are directly

converted frc- the LOTOS specification of the generic

gateway. However, the abstract data types can not be

directly converted into CLIPS, because current CLIPS does not

support the functional representation. The abstract data

objects must be blended into rules and facts, as concrete

data objects.

While we consider the system as a finite state

machine (FSM). The system's status can be identified by a

state variable and the value of the state variable which

represents the system's status. CLIPS is not a procedural

language and the temporal ordering conditions must be

represented in the predicate part of the protocol rules. The

state transitions are reflected as removing the conditions

which activate the current rule and creating the condition

which activates the next rule.
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Gateway

tI

Figure 6.10 Structure of Generic Gateway Test System

The following example (Figure 6.11) shows a

relationship between finite state machine, LOTOS, and CLIPS.

Suooose there are two states P and Q, P and Q are to be

executed sequentially. The LOTOS (middle) represents the FSM

by sequential composition symbol ';' between two processes P

and Q. The CLIPS (right) represents the FSM by two rules,

ProcessP and ProcessQ. The Process P is activated by the

predicate fact (p), and the ProcessQ is activated by the

predicate fact (q). The temporal order of those two
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processes is maintained by the predicate fact (q) which is

asserted by the ProcessP.

Suppose the two process P and Q execute simultaneous-

ly (Figure 6.11). Then the "P;Q" in the LOTOS have to be

replaced by "P I Q" (1I is a parallel operator), In the

CLIPS representation, the predicate condition (p) and (q)

must be initially provided to activate the ProcessP and

ProcessQ. The result of both LOTOS and CLIPS representa-

tions will satisfies the requirements of concurrent

execution.

FSM LOTOS CLIPS

P: goto Q < > P; (defrule Process_p
(p)

Q: Q =>

(assert (q))

(defrule Process_Q

(q)

Figure 6.11 Conversion LOTOS processes to CLIPS rules

In LOTOS, the communication between processes is

represented as a tuple of a gate and a finite set of

messages. Suppose the process P sends a message 'm' to a

process Q through gate g (Figure 6.12). The activity is



165

represented as "g!m" at the message sender (process P) and as

"g?n in>0]" at the message receiver (process Q) in the LOTOS

representation. Because the each rule in CLIPS has atomic

property, the conversion from LOTOS to CLIPS requires special

care, such as the each process of the LOTOS must be split

into pre-event rule and post-event rule. In this particular

example, the process P is represented by two rules which are

identified as Process P2 and Process P2. The Process 21

represents the pre-event activity PI and g!m. And the

?rocess_22 represents the post-event activity P2. The same

way the process Q is split into Process_QI and ProcessQ2.

In the CLIPS the message is represented as a fact which is

created by the sender and consumed by the receiver. The

message fact synchronizes between processes, sender and

receiver. In this example the process Q have to wait for the

message fact "(g n&:(> n 0))."

The above conversion techniques in the Generic

Gateway specification in the LOTOS can be easily converted

into the CLIPS representation. The states of the

communicating entities (sender or receiver) are represented

as a set of rules, and each rule represents the state of each

entities. The rule is activated when the conditions of the

rule are satisfied and the state transition is done by

creating new facts which can activate the next rule which

representing next state.



166

LOTOS CLIPS

process P:= (defrule Process P1
PI; (pl)

g!m; =>
P2 P1

(assert (g m))
(assert (p2))

(defrule ProcessP2
(p2)

P2

process Q (defrule Process_Ql
QI; (ql)
g?n [n >01; =>
Q2 Q1

(assert (q2))

(defrule Process Q2
(q2)
(g n&:(>n 0))

Q2

Figure 6.12 Conversion LOTOS Interprocess
Communication to CLIPS rules
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6.5.2 Generic Gateway Tester

The tester of the generic gateway is a set of rules

which acts as an observer of the gateway's behavior during

the system execution. The tester monitors various properties

of the generic gateway. Which includes various protocol

negotiations, buffer history, communication path

establishment and termination.

6.5.3 Generic Gateway Verifier

The generic gateway verifier is responsible various

tasks. First, it is responsible to manage a test environment

such as individual test scenario can be established by the

verifier. Secondly, it is responsible to analyze test result

which produced by the tester. By the result above, the

verifier generates the next test scenario and repeats the

simulation on the selected scenario until all possible cases

are tested.



CHAPTER 7

SUMMARY AND CONCLUSION

7.1 Summary

->The generic gateway's characteristics can be

summarized as follows:

"i it provides a communication protocol conversion up to

transport layer;

.b. The connectionless and connection-oriented subnetworks or

their services can be interoperable;

-.4 The reliable data transport is expected by each individual

subnetwork independently, because the reliable data

transport control can not be expected as a global level by

the their control mismatch;

,d. The generic gateway is decomposed with two distinguishable

modules, subnetwork independent and subnetwork dependent

blocks;

e 'The each subnetwork more specifically subnetwork

dependents blocks communicate with subnetwork independent

block, through the universal service access points;

f. Each subnetwork interfacing modules can be designed and

implemented independently. .,

168
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The formal specification of the generic gateway is

provided with formal specification language LOTOS which is

proposed as a formal specification language. Appendix A

contains the LOTOS specification of the generic gateway.

Finally, the generic gateway testing model is

constructed and verification techniques are demonstrated with

a modified constraint oriented language CLIPS. The approach

used in this research shows that protocols and designs for

gateways can be developed using formal specification

techniques.

Eventually, the ISO LOTOS and ESTELLE languages will

be developed with compilers and executable environments.

These efforts should be followed for applicability to gateway

protocol design.

7.2 Future Suggestion

The aggressive specification of the generic gateway

has not been finished at this stage, especially the gateway

specific functions. The gateway-to-gateway protocols and

routing algorithms are not included and must be developed.

The verifiable testing tool has a lot of room for

improvement. A few suggestions for the improvement on the

CLIPS are: a) use abstract data type representation; and b)
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use monitor routines which independently operable to rule

base and inference engine.



APPENDIX A

Socecifficacion G eneri'c Gazeway~a,bI:noexit

Generic Gateway Specification with LOTOS

1. Global Type Definitions

zype Address .. endtype (*Address scructure *

tv'oe Dar a (*Data structure
opns DO: -> Data (*Empty Data

endtvoe

:'voe ?krTvoe is
3orts ?kt~ype
oons Conleq, Cond, ConRes, ConCnf,

DisReq, DiSU.d, AckReq,Ackind,
DaraReq, Datand....- PktType

end t vie

:;e rect ion is
so-rzs D rect~on
oons LOCAL, REMOTE: ->Direction

Ynce AddressPaiLr is Address with
nc:sAddre ssoair

Ionls createpair: Address, -ddress -> Addresspair
Src~ddress: Addressoair ->Address

Des Address: Addresspair - Address
eqns forall a,b: Addresscai-r

oLSOr: Address
Src.Address~c:-a'enar; a/ 0)) a
Des :Address ce sarU,) b

:~'5 ie:.'c (~ '~eor- subne:-wor< ,)
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sorts NetType
opns Connection Oriented: -> NetType

Connectioniess: -> NetType
endtype

( -*

Each subnetwork characteristics information

type BasicNetInfo is NetType, Integer, Boolean, with

sorts Netinfo

opn s
Netprot: Netinfo -> NetProt
Transprot: Netinfo -> TransProt

Blocking: Netinfo -> Boolean
Segmenting: Netinfo -> Boolean

Pktsizelimit: Netinfo -> Integer
Pktdelaylimit: Netinfo -> Integer
Condelaylimit: Netinfo -> Integer

MAXPKTSIZE: -> Integer
MAXPKTDELAY: -> Integer
MAXCONDELAY: -> Integer
MAXIDLETIME: -> Integer

eqns forall r: Netinfo
ofsort Integer
Pktsizelimit(r) = MAXPKTSIZE
Pktdelaylimit(r) = MAXPKTDELAY
Condelaylimit(r) = MAXCONDELAY

endtype

Formal packet structure

* ******************************************************* -

2. Behavior Expressions

The behavior specification of the gateway is decomposed
with two SNPBs and a PNB. One SNPB represents the
connectionless subnetwork and the other SNPB represents the
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connection-oriented subnetwork.

Including two SNPB specifications doesn't implies that one
of subnetworks is in connectionless mode ana che other is
in connection-oriented mode. But, the two distinguishable
SNPBs are provided only as examples of the SNPBs one for
each type of subnetworks. By that any connected
subnetworks can be either connectionless or connection-
oriented subnetworks depends on the implementation.

*************** ********************************* *)

behavior GENGATEWAY[a,b]:noexit

where

*

GEN-GATEWAY:

In this soecification, generic gateway (from now on it
will be referred as a gateway for the convineance) is
decomposed with three seperate submodules.

The each modules are completely disjointed each other.
By that they are only allowed to exchange information
through the communication channels called gates.
In the global specification, there are 4 gates, Two of
them are interface gates (gate 'a' and 'b'),

And the other two gates, gate 'pa' and 'pb', are internal
gates which are not visible from the outside of the
specification.

gates:
a, b: communicates with SMABs
pa, ob: internal gates which are resoonsible for

communication between SNPBs and PNB.
The activity on the gates can not observable from
outside of the gateway specification.

parameters: none (no initial parameters are required)

exit:
rioexit ( it is not terminating process

------------------------------------------------------ *

process GEN GATEWAYa,b! :noexit
hide pa, po in
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SNPBStart ia, pa]
[pall
PNBStart pa ,pb I

I (pbl I
SNPBS tar t ipb, b

endproc (*GEN-GATEWAY *

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.1 SNPB

Because the behavior of subnetworks are not similar each
other, they can not be represented by one specification.
In this specification the following two specific SNPBs
are provided 1) connectionless subnetworks 2) connection-
oriented subnetworks.

2.1.1 SNPB specification (Connectionless, subnetwork)

In this cilouse the SNPB specification of the
connectionless subnetwork is provided.-

(Local Data Type definitions *

(*Type FIFIQueue defines the first in first out queues *

(*The size of queue is assumed unbounded

type FIFOQueue is Data with

sorts EQueue

opns createque: -> FQueue
first: FQueue -> Data
add: Data, FQueue -> FQueue
QO: -> FQueue
rest: FQueue -> Data

eqns forall x,y:Data, q:FQueue

ofsort FQueue
createque =QO
rest(createque) = QO
rest(add(x,createque)) =QO

res'.(add(x,add(y,q))) =add(x, rest(add(y,q)))



ofsort Data
Eirst(createque) =DO
first(add(x,createque)) = x
first(add(x,add(y,q))) first(add(y,q))

end type

typoe SNetlnfo is BasicNet~nfo renamedby

sortnarnes SNetlnfo for Netinfo

opns nettype: SNetlnfo -> NetType

eqns forall r:SNetlnfo

ofsort Net"6ype
nettype(r) =Connectionless

end type

type SconInfo is Direction, String with
sorts SConlnfo
opns

ConInitiated: SConinfo -> Direction
SetlnitDir: Direction, SConlnfo -> SConlnfo
Reason: SConlnfo -> String
SetReason: String, SConlnfo -> SConlnfo

eqns foral info:Conlnfo, d:Direction, str:String

ofsort Direction
Conlnitiated(SetlnitDir(d,info)) =d

ofsort String
Reason(SetReason(str,info)) =str

end type

- type SQueues is FIFOQueue with
sorts Ques

opns createques: FQueue, FQueue ->Ques

LocQue: Ques -> Queue
RemQue: Ques -> Queue

eqns fforal2. a,b: EQueue

ofsort EQueue
LocQue(createaues(a,b)) =a
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RemQue(createques(a,b)) = b

endtype

type SConRef is AddressPair, SQueues, SconlInfo with
sorts SconRef
opns

CO: ->SConRef

CreateCon: AddressPair, Ques, ConInfo -> SConRef
ConAddress: SConRef ->AddressPair

ConInfo: SConRef ->SConlnfo

ConQues: SConRef ->Ques

eqns forall c:SConRef, q:Ques, info:Conlnfo, a:AddressPair

ofsort Ques
ConQues(CreateCon(a,q,info)) = q

ofsort SConlnfo
Info(creaceCon(a, a, info)) =info

ofsort AddressPair
ConAddress(createCon(a, q, info)) =a

endtype

type SConList is Addresspair, SConRef with

sorts SConList

oons createcons: -> SConList
empty: -> SConList
Removecon: SConRef, SConList -> SConList
Addcon: SCc-nRef, SConList -> SConList
GetCon: Addresspair, SConList ->SConRef

_IsIn Addresspair, SConList ->Boolean

_IsNotln_ : Addresspai-, SConList -> Boolean

eqns forall r,t:SConRef, c:SConList, a:Addresspair

ofsort SConList
Removecon(r, createcons) =empty

Removecon(r, Addcon(r,c)) c
t neq r =>
Removecon(r, Addcon(t,c)) = Addcon(t,Removecon(r,c))

Addcon(r, Addcon(r,c)) = Addcon (r, c)
t neq t =>
Addcon(r, Addcon(t,c)) = Addcon(t, Addcon(r,c))

ofsort SConRef
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GetCon(a, createcon) = CO
ConAddress(r) eq a =>

GetCon(a, Addcon(r,c)) =r
ConAddress(r) neq a =>

GetCon(a, Addcon(r,c)) = GetCon(a,c)

ofsort Bool
a Isln createcons = false
a neq ConAddrress(t) =>

a IsIn Addcon(t,c) =a IsIn c
a eq ConAddress(t) =>

a rsln Addcon(t, c) =true

a TsNotln c =not(a IsIn c)

endtype (* SConList *

type SNPktlnfo is PktType ... with
sorts Simnfo
opns

createsinfo: PktType -> Slnfo
pkttype: Sinfo -> PktType

- eqns forall p:PktType
ofsort PktType
pkttype(createsinfo(p)) = p

endtype

type SNPkt is PktType, Data, Addresspair, with
sorts SNPkt

opns data: SNPkt -> Data
PktAddress: SNPkt -> Addresspair
createpkt: Addresspair, Stnfo, Data -> SNPkt
pktinfo: SNPkL -> Srnfo

eqns forall p:Pkt, a: Addresspair, i:Slnfo, Id:Data

ofsort Data
data(createpk"tia,i,d)) = d

ofsort Addresspair
PktAddrpair(createpkt(a,i,d)) =a

ofsort Snfo
pktinfo(createpkt(a,i,d)) = i

endtype (* SNPkt *
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2.1.2 Behavior Specification of SNPB
(Connectionless Mode)

*****************************************************)

SNPBStart:

SNPBStart calls two subprocesses.

SNPBInit is responsible to initialize internal static
information, and to send the information to the PNB.

SNPB is a main body of the SNPB module and it is only
valid when the SNPBInit terminates successfully

gates:
a: to communicates with SMAB
b: "l with PNB

parameters:
none

exit:
noexit

process SNPBStart[a,b] :noexit
SNPBInitb](linfo, cons)

accept info:SNetInfo, cons:SConList in
SNPBa,b](info,cons)

where
*

SNPBlnit:

Initializes the SNPB then sends the information to the
PNB. Also the information of the SNPB will be passed
to SNPBStart.

gates:
b: with PNB

parameters:
none



185

exit:
info: SNetinfo - local subnetwork information
cons: SConList - Connection list

-- - - - -- - - - - - - - - - - - - - ------ --- ---

process SNPBInit[b] :exit (SNetInfo, SConList):=
i(iMynetinfo, cons) (* internal function, which produces

subnetwork infromation and initial
connection reference list. *)

b ! Mynetinfo;
exit (Mynetinfo, cons)

endproc (* SNPBInit *)

--

SNPB:

The process SNPB has four subprocesses which operate
concurrently and they are synchronized by the activities on
the internal gates 'ga', 'gb', and 'ds'.

The two processes, SNPBUInterface and SNPBDInterface, are
responsible to exchanges packets with other modules (PNB,
SMAB).

The SNPBConHandler communicates with SNPBInterfaces and
SNPBProtocol. It is responsible to create new connection
reference when it is required, and remove the connection
reference when it is no more needed.

Finally the process SNPBProtocol is the main body of SNPB
which provides protocol services.

gates:
a: communicates with SMAB
b: "with PNB
ga, gb, ds: internal gates

parameters:
info:SNetInfo,
cons:SConList

exit:
noexit

-- *
process SNPB(a,bj (info:SNetInfo, cons:SConList) :noexit

hide ga, gb, ds in
SNPBConHandler[ds] (info, cons)
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I(ds]
SNPBDInterface[a,ga,ds] (info)

(gal
SNPBProtocolfga,gb,ds] (info)

[gb1 

-

SNPBUInterface[b,gb,ds] (info)
)

endproc * SNPB *)

(*------------------------------------------------------
SNPBDrnterface:

Communicates with SMAB.

gates:
a: communicates with SMAB
ga: with SNPBProtocol (internal gate)
ds: with SNPBConHandler (internal gate)

parameters:
info:SNetInfo

exit:
none

process SNPBDInterface(a,ga,ds] (info:SNetInfo): exit
a ?pkt:SNPkt, ds !PktAddress(pkt);
ds ?con;
ga !pkt !con[]
ga ?pkt:SNPkt;
a !pkt

SNPBDInterfacefa,ga,ds] (info) (* repeats the process *)
endproc (* SNPBUInterface *)

SNPBUInterface:

communicates with PNB.

gates:
b: communicates with PNB
gb: with SNPBProtocol (internal gate)
ds: with SNPBConHandler (internal gate)

parameters:
info:SNetInfo
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exit:
none

process SNPBUInterface(b,gb,ds] (info:SNetmnfo) :exit
b ?pkt:PNPkt, ?con:SConRef;
i(pktlpkt');
[con eq CO] => ds ! 'new, ?con;
gb !pkt', !con

(1
gb ?pkt:SNPkt, ?con:SConRef;
i(pktlpkt');
b !pkt', !con

SNPBUInterface(a,ga,ds] (info)
endproc (* SNPBUInterface *)

(*

SNPBConHandier:

Manages connection entries.

gates:
a: communicates with other processes in SNPB

parameters:
info:SNetInfo,
cons:SConList

exit:
none

process SNPBConHandler(dsj (info:Netinfo, cons:SConList):
exit

ds ? a:Addresspair;
a LsIn cons] ->
ds !Getcon(a,cons)

a IsNotIn cons] ->

let con = CreateCon(a,
createques(createque,createque),
info);

let cons = Addcon(con, cons);
ds !con

[]I
(ds ?con:SconRef, ? remove:Command;
let cons = RemoveCon(con, cons);
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(ds ?con:SConRef, ?new:SConRef;
let cons = AddCon(new, RemoveCon(con, cons));

SNPBConHandlertds] (info, cons)

endporc (* SNPBConHandler *)

*-------------------------------------------------------
SNPBProtocol:

The first statement of the process is a choice expression.
The operator choice selects one of the reference entries
and their choice is non-deterministic. As far as the
connection reference is selected the activity of the SNPB
will be carried by the reference which is referred as
'con'

gates:
a: communicates with SNPBDInterface
b: communicates with SNPBUInterface
ds: " with SNPBConEandler

parameters:
info:SNetInfo

exit:
none

process SNPBProtocol [a,b,ds] (info:SNetInfo):exit
choice con:SConRef [I =>

DatalndM(aj (con I x);
let new = CreateCon(ConAddress(con),

CreateQues(add(LocQue(ConQues(con)),x),
RemQue(ConQues(con))),

Conlnfo(con));
ds !con !new; exit(]
DataReqP[b] (con I x);
let new = CreateCon(ConAddress(con),

CreateQues(LocQue(ConQues(con)),
add(RemQue(ConQues(con)),x),

ConInfo(con));
ds !con !new; exit

[Eirst(LocQue(ConQues(con))] ->

DataIndP(b] (first(LocQue(ConQues(con)))

AckReqP[b](con);
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AckReqM[a] (con);
let new =CreateCon(ConAddress(con),

CreateQues(rest(LocQue(ConQues(con)),x),
RemQue(ConQues(con))),

Cofllnfo(con));
ds !con !new; exit

llFirstRQue(con)1 -

DataReqM~a] (f'irst(Rque(con)))

AcklndMtal (con);
AcklndP[b] (con);
let new = CreateCon(ConAddress(con),

CreateQues(ELocQue(ConQues(con)),
rest(RemQue(ConQues(con)),x),

Connfo(con));
ds !con !new; exit

(Timeout(con)I -

ds !con, !'remove; exit

SNPBProtocol~la,o,ds] (info)
endporc (* SNPBprotocol *)

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SNPB Service primitives

(Receives a Data Unit from PNB *)
process DataReqP (c] (con:SConRef) :exit (Data)

c ?pkt:SNPkt fpkttype(pkt) Is DataReq],
?con':SConReE lcon' eq con];

exit(Data(pkt))
endproc

(* Sends a Data UCnit to SMAB *
process DataReqM [c] (con:SConRef, data:Data): exit

i(con,datalpkt) (*Build a DataReq *
c !pkt:SNPkt (*Build a SNPkt *

endproc

(Receive a Data Unit from SMAB *
process DataIndP [c] (con:SConRef) :exit (Data)

c ?pkt:SNPkt [pkttype(pkt) Is Datalnd],
?con':SConRef [con' eq con];

exit(Data(pkt))
endproc
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(* Sends a Data Unit to PNB *)
process DatalndM [c] (con:SConRef, data:Data):exit =

i(datalpkt) (k Build a Datalnd *)
c !pkt:SNPkt

endoroc

(* receives a AckReq from PNB *)
process AckReqP [c] (con:SConRef) :exit

c ?pkt:SNPkt [pkttype(pkt) Is AckReq],
?con':SConRef [con' eq con];

endproc

(* Sends a AckReq to SMAB *)
process AckReqM [c] (con:SConRef):exit

i(conlpkt); (* Build a AckReq *)
c !pkt:SNPkt

endproc

(k receive a AckInd from SMAB *)
process AckndM [c] (con:SConRef) :exit

c ?okt:SNPkt [pkttype(pkt) Is AckLnd],
?con':SConRef [con' eq con];

endproc

(* Sends a AckInd to PNB *)
process AcklndP [c] (con:SConRef):exit :=

i(conlpkt); (* Build a AckInd *)
c !pkt:SNPkt

endproc

endproc (* SNPBStart *)

2.1.3 SNPB Specification
(Connection-oriented Mode)

**************************************************** *

---------------------------------------------------------------------

Local Data Type definitions

(* Type WINQueue defines a window queue *)

type WINQueue is Data with (* Window Queue is used for the
Connection oriented
Subnetwork *)
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sorts WQueue
opns create: ->WQueue

QO: ->WQueue

nth: integer, WQueue ->Data

ad'd Integer, Data, WQueue -> WQueue

eqns :orall x y:Data, n mn: Integer, q:WQueue
ofscrt Data
ath(n, create) =DO

athin, add(n, x, q)) = x
m neg n =>

nth(n, add(m, x, q)) = nth(n,qj
nth(n, rest(n,q)) = DO

ofsort Boolean
is_empty(DO) = true
-is empty(add~n, x, q)) = false

ofsort WQueue
add(n,x,add(n,y,q)) =add(n,x,q)

n neq m =>
add(n,x,add(rn,y,q)) = add(m,y,add(n,x,q))
rest(n, create) = QO
rest(n, add(n,x,q)) =q

n neq m =>
rest(n, add(m,x,q)) =add(m, x, rest(n,q))

endtypet

type SQueues is WINQueue with
sorts Ques

opns createques: WQueue, WQueue -> Ques
LocQue: Ques ->WQueue

RemQue: Ques ->WQueue

eqns forall a,b: WQueue

ofsort WQueue
LocQue(createques(a,b)) =a
RemQue(createques(a,b)) = b

endt ype

type SNetInnfo is BasicNetInnfo renamedby
sortnames SNetlnfo for NetInfo
opns nettype: SNetlnfo -> NetType

eqns foral r:SNetlnf~o

ofsort NetType
nettype(r) = ConnectionOriented
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endtype

type Sconinfo is Direction, String, Integer with
sorts SConInfo, SConState
oons

Created: ->SConState
Transfer: ->SConState

ConInnitiated: SConlnfo -> Direction
SetDirection: Direction, SConl~nfo -> SConlnfo
ReversInnit: SConInnfo -> SConInnfo
SetState: ConState, SConInnfo -> SConInnfo
SetLastSent.: SConInnfo, Integer, Direction -> SCanInnfo
NexttoSend: SConlnfo, Direction -> Integer
LastSent: SConlnfo, Direction -> Integer
Reason: SConlnfo -> String
Set~eason: String, SConlnfo -> SConlnfo

eqns forall info:ConInfo, d:Direction, str:String,
i: Integer, s:SConState

ofsort Direction
Conlnitiated(SetDirection(d,info)) =d

ofsort String
Reason(SetReason(str,info)) = str

ofsort SConInfo
Reverslnit(SetDirection(LOCAL,info))

SetDirection(REMOTE, info)
Reverslnit(SetDirection(REMOTE,info))=

ofsor S~ontateSetDirection(LOCAL, 
info)

state(SetState(s,info)) = s

ofsort Integer
NexttoSend(SetLastSent(info, i, d)) =i + 1
LastSent(SetLastSent(info, i, d), d) =i

endtype

type SConRef is
(* same as Connectionless SNPB SConRef *

end type

type SCont~ist is
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(* same as Connectionless SNPB SConList *)
endtype

type SNPktInfo is PktType, Integer, ... with
sorts Slnfo
opns

createsinfo: PktType, integer -> SInfo
pkttype: SInfo -> PktType
pktseq: SInfo -> integer

eqns forall p:PktType, i:Integer
ofsort PktType
pkttype(createsinfo(p,i)) p
pktseq(createsinfo(p,i)) i

endtype

type SNPkt is

endtype

2.1.4 Behavior Specification of SNPB
(Connection-oriented Mode)

*************************************************** *

(*

SNPBStart:

gates:
a: communicates with SMAB
b: with PNB

parameters:
none

exit:
noexit

*

process SNPBStart[a,b] :noexit
SNPBInit(bj(info, cons)

accept info:SNetInfo, cons:SConList in

SNPB~a,b](info,cons)

where
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SNPBtnit:

gates:
b: with PNB

parameters:
none

exit:
info: SNetrnfo - local subnetwork information
cons: SConList - Connection list
---------------------------------------------------

process SNPBInit(bj :exit (SNetinfo, SConList)
i(IMynetinfo, cons);

(*Initializes internal processes, generates the
Subnetwork information, and sends it to the PNB *

b Mynetinfo;
exit (Mynetinfo, cons)

endproc (*SNPBInit *

SNPB:

gates:
a: communicates with SMAB

b : f itwith PNB
ga, gb, ds: internal gates

parameters:-
info:SNetlnfo, cons:SConList

exit:
noex it

process SNPB(a,b] (info:SNetlnfo, cons:SConList) :noexit
hide ga, gb, ds in

SNPBConHandler fds] (info, cons)
I (ds] I

SNPBDrnterface(a,ga,dsI (info)
j (galI

SNPBProtoco-ijga,gb,dsj (info)
11gb] I
SNPBtJInterface(b,gb,dsl (info)

endproc (*SNPB *
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*

SNPBDInterlface:

gates:
a: communicates with SMAB
ga: 1... with SNPBProtocol (internal gate)
ds: "" with SNPBConHandler (internal gaet)

parameters:
info:SNetlnfo

exit:
none

process SNPBDInterface[a,ga,ds] (info:SNetlnfo) :exit
a ?pkt:SNPkt, ds !PktAddress(pkt);
ds ?con;
ga !pkt !con[]
ga ?pkt:SNPkt; a !pkt

SNPBDInterface[a,ga,ds] (info)
endproc (* SNPBUInterface *)

*-----------------------------------------------------

SNPBUInterface:

gates:
1: communicates with PNB
gb: 10 with SNPBProtocol (internal gate)
ds: '' with SNPBConHandler (internal gate)

parameters:
info:SNetInfo

exit:
none

process SNPBUInterfacefb,gb,ds] (info:SNetlnfo) :exit
b ?pkt:SNPkt, ?con:SConRef;
i(pktlpkt'); (* Convert pkt to PNB Structure *)
(con eq CO] => ds 'new, ?con; (* new con ref. *)
ab !pkt', !curl;

gb ?pkt:SNPkt ?con:SConRef;
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i(pktjpkt'); (*Convert pkt to PNB Structure *
b !pkt', !con

SNPBUlnterface[a,ga,ds] (info)
endproc (* SNPBtUlnterface *)

SNPBConHandler:

gates:
a: communicates with other processes in SNPB-

parameters:
info: SNet Info,
cons: SConList

exit:
none

process SNPBConHandlerfds] (info:Netinfo, cons:SConList):
exit

ds ? a:Addressoair;
a IsIn cons] ->
ds !Cetcon(a,cons)

a IsNotln cons] -

let con =CreateCon(a,

createques(createque,createque),
info);

let cons =Addcon(con, cons);
ds !con;

ds ?con:SconRef, ?remove:Command; (*Remove ConRef *
let cons = RemoveCon(con, cons)

ds ?con:SconRef, ?new:SConRef; (*Update ConRef *
let cons = AddCon(new, RemoveCon(con, cons))

SNPBConHandlerfds] (info, cons)
endporc (* SNPBConHandler *)

SNPBProtocol:-

gates:
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a: communicates with SNPBDnterface
b: with SNPBtjlnterface
ds: with SNPBConHandler

parameters:
info: SNet Info

exit:
none

process SNPBProtocol [a,b,dsl (info:SNetlnfz): exit
choice con:Ref (I=

(state(Info(con)) Is created])-

Conlnd~ia] con);
let new = CreateCon(ConAddress(con),

ConQues(con),
SetDirection(Local,Info~con)));

ds !ccn, !new;
SENDCONINDI0a,0d(info, new); exit

ConReqP(bI (con);
let new = CreateCon(ConAddress(con),

ConQues(con),
Set~irection(Remote,Info(con)));

ds Wcon, !new;
SEND CONIND~a,b~ds](info, new); exit

SNPBprotocol [a,b,ds] (info)
endporc (* SNPBprococol *)

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SENDCONIND:

if the disconnection request is received from the
connection initiating party the connection will be closed.
And if the another connection request is received from the
connection responder the connection reference will enter
the double connection resolution process.

gates:
a: communicates with SNPBDlnterface

b: with SNPBUlnterface
ds: with SNPBConHandler

parameters:
info:SNetlnfo,
con: SConReE

exit:
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none

process SENDCONIND Era,b,ds] (info:SNetlnfo, con:SConRef):
exit

[Con~nitiated(Info(con)) = LOCAL] -

ConlndP'Lb](con);
WAIT CONFIRM [a,b,ds](info, con);exit

DislndM[a] (con);
ds !con, !Vremove;exit

ConReqP(bI (con);
DOUBLECONNECT(a,b,ds] (info, con);exit

[Conlnitiated(:nfo(con)) =REMOTE] -

ConReqM~a](con);
WAITCONFIRM. ja,b,ds](info, con);exit

DisReqP~b] (con);
ds !Con, !'remove;exit

ConlndMta] (con);
DOUBLECONNECT(a,b,ds] (info,con);exit

endproc (* SENDCONIND *

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

DOUBLECONNECT:-

In the generic gateway only one connection is allowed for
each pair of communication entities. By that only one
direction of the connections will be granted and the other
must be rejected (Connection request collision).

gates:
a: communicates with SNPBDInterface
b: Itqwith SNPBUlnterface
ds: fto with SNPBConHandler

parameters:
info: SNetInfo,-
con: SConRef

exit:
none

process DOUBLECONNECT [a, b, ds] inf o: SNetlnf o, con: SConRef)
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exit
[Conlniciated(Info(con)) = LOCAI -

DisIridMfaj (con);
SEND CONIND~ia,b,dsl (info,

Cr eateCon (ConAddress (con),
ConQues(con),

ReversIn;t ( tnfo( con) )))
exit-

DisReqPib] (con);
SENDCONIND~a,b,dsj (info,con); exit

let reason = 'Connection already in progress from remote";
let con' = CreateCon(ConAddress(con),

ConQues(con),
SetReason(reason,Info(con)));

DiJsReaMial(con );
SEND CONINDt~a,b,ds] (info,

CreateCon(ConAddress(con' ),
ConQues(con' ),

Reverslnit(Info(con' ))));
exit

[Conlnitiated(Info(con)) = REMOTE] -

DislndM(a] (con);
SENDCONINDI~a,b,ds] (info,con);exit

DisReqP~l (con);
SENDCONINDF~a,b,dsl (info,

CreateCon(ConAddress(con),
ConQues(con),
Reverslnit(Info(con))));

exit

let reason = "Connection already in progress from remote";
let con' = CreateCon(ConAddress(con),

ConQues(con),

SetReason( reason, In1Eo(con) ));
DisReqMja](con );
SENDCONINDI~a,b,ds] (info, con');exit

endproc. (*DOUBLECONNECT *

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

WAITCONFIRM:
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After the connection indication is sent to the connection
responder, the gateway must waits for the connection
response from the connection responder.

gates:
a: communicates with SNPBDInterface
b: fl with SNPBUInterface
ds: "" with SNPBConHandler

parameters:
info:SNetlnfo,
con: SConRef

exit:
none

*-
process WAITCONFIRM [a,b,ds] (info:SNetInfo, con:SConRef):

exit :=
[Conlnitiated(info(con)) = LOCAL] ->

ConResP[b] (con);
CON PROCa,b,ds] (info, con);exit
i(
DisReqP[b] (con);
DisReqM~a] (con);

ds !con, !'remove;exit
[(
DislndMa] (con);
DisrndP~b] (con);

ds !con, 1'remove;exit

(Conlnitiated(Info(con)) = REMOTE] ->

ConCnfMfa] (con);
CONPROCa,b,ds] (info, con);exit

-isReqP(bI (con);
DisReqMtaI (con);
ds !con, !'remove;exit

[]
DisLndM[a] (con);
DisIndD(b] (con);
ds !con, !'remove;exit

endproc.

-----------------------------------------

CONPROC:

This is the final stage of connection establishment phase.
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During this phase the connection conform is sent to the
connection requester.

ates:
a: communicates with SNPBornterface
b: '" with SNPBtllnterface
ds: "" with SNPBConHandler

parameters:
_nfo:SNetilnfo,
con-: SCon.Ref

exexit

~Ccn-.nitiated(:nfo(con)) =LOCAL] -

DataReaPtbl (con X)-

add data(con, x, REMOTE !con');
AckfndP[b' (con', Ack(Info(x));
CONPROC La,b,ds](info, con');exit

rl

L Cznmnjtiated(lnfo(con)) = REMOTE] -

DataindM(al (con IX);
add data(con, x, LOCAL Icon');
AckReqMia] (con, Ack(Info(x)));
CONPROC (a,b,ds](info,con');exit

DisReqP[b I (con);
-Di;sReqM~a] (con);

ds !con, !'remove;exit

DisindMr a j (con);
DislndP~bi (con);
ds !con, !'remove;exit

[Conlnitiated(:nfo(con)) =LOCAL] ->ConCnfP(bl(con)

IConlntiated(nfo(ccn)) = REMOTE] - ConResM[a](con)
DATATRANSFER~a,b,ds1 (ConAddress(con),

C rea teCon (ConAddress (con,
ConQues(con),

SetStLate(Transfer,Info(con) ) )
exit

endproc. (4 CON PROC 4

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

DATA-TRANSFER:
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gates:
a: communicates with SNPBDnterface
b: i"with SNPBUlnterface
ds: "" with SNPBCon~andler

parameters:
info: Setrifo,
con: SConRef

exi~t:
none

process DATA-TRANSFER (a,b,ds] (info:SNetlnfo, con:SConRef):

(state()nfo(con)) =Transfer] exi

DataindMfal (con x);
add data(con, x, LOCAL Icon');
DATA-TRANSFER fa,b,ds] (info, con');exit

DataReqPfbI (con Ix);
add-data(con, x, REMOTE Icon');
AcklndP~b] (con, Ack(x));
DATATRANSFER (a,b,dsI (info, con);exit.

[not(is empty(LocQue(ConQues(con))) j ->
SEND DATA~bI (info, con, LOCAL icon');
DATATRANSFER [a,b,dsl (info, con);exit

fnot(is empty(RemQue(ConQues(con))))I -

SEND DATAfa] (info, con, REMOTE icon');
DATATRANSFER Ia,b,ds] (info, con);exit

AcklndM~aI (con 1z);
remove datalldsl(con, z, REMOTE Icon');
DATATRANSFER [a,b,ds] (info, con');exit-

DisindM(al (con);
TERMItNATION(a,b~ds] (info,

CreateCon(ConAddress(con),
ConQues(con),

SetState(Terminate, Info(con))),
LOCAL); exit

DisReqPjbI (con);
TERMINATION~a,b.ds] (info,

CreateCon(ConAddress(con),
ConQues(con),

SetState(Terrninate, Info(con))),
REMOTE); exit
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endproc. (* DATATRANSFER *)

---------------------------------------------

TERM:NATION:

To orovide graceful disconnection any non delivered data
packets must be properly delivered before it releases the
connection.

gates:
a: communicates with SNPBDInterface
b: .with SNPBUInterface
ds: .. with SNPBConHandler

parameters:
!nfo:SNetInfo,
con: SConRef

exit:
none

process TERMINATION [a,b,ds] (info:SNetInfo, con:SConRef,
d:Direction): exit

Id = LOCAL] ->

[not(is empty(LocQue(ConQues(con))))] ->
SENDDATA[b] (info, con, LOCAL);
TERMINATION [a,b,ds] (inf, con, LOCAL)

DisIndP[b] (con);
ds !con, Premove;exit

(1
- {[d =REMOTE] -

[not(is empty(RemQue(ConQues(con))))] ->
SEND DATAfa] (info, con, REMOTE);
TERMINATION [a,b,ds] (info, con', REMOTE)

DisReqM[a] (con);
ds !con, !'remove;exit

endproc. (* TERMINATION *)

( *

SENDDATA:

gates:
a: communicates with SNPBInterfece

1s: "It SNPBConHandler



204

parameters:
Lnfo:SNetln=fo,
con: SConRef,
d:Direction

exit:
SConRef

process SENDDATA (a] (inf:Netlnfo, con:SConRef d:Direction):
exit(SConRef)

[d LOCAL] ->

let seq = NexttoSend(Info(con), LOCAL);
Find -data(seq, RemQue(ConQues(con))) is true I -

let data = nth(seq,RemQue(ConQues(con)));
DatalndP~al(con, data);
let new = CreateCon(ConAddress(con),

ConQues(con),
SetLastSent( Info(con),

seq,LOCAL));
exit (new)

[dREMOTE] -

let seq = NexttoSend(Info(con), REMOTE);
tFind -data(seq, LocQue(ConQues(con))) is true I-

let data = Get data(seq,LocQue(C 'onQues(con)));
DataReqm(aI (con, data);
AckIndM~aI (con' Iz);
let new = CreateCon(ConAddress(con),

ConQues(con),
SetLastSent(tnfo(con),

seq,REMOTE));
exit(new)

endproc.

---------------------------------------------

add data:
inserts incoming data on queue.

parameters:
con: SConRef,
data:Data,-
d:Direction,

gates:
none

exit:

SConRef - updated connection reference entry

---------------------------------------------------
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Drocess add-data (con:SConRef, pkt:SNPkL, d:Direction):
exit(SConRef)

d=LOCAL] ->
let oktseq = I-etseq(Info(pkt));

ltseq = rastSent(Info(con), LOCAL);
[:zk~seq > seq and pktseq < seq + Quesize(Info(con))] -

.et new = CreateCon(ConAddress(con),
Createques(add(pktseq,Data(pkt),

LocQue (ConQues (con))),
RemQue(ConQues(con))),

Info(con) );
exit(new)

[d =REMOTE] -

let oktseq =Getseq(Info(pkt));

Let seq =LastSent(Info(con), REMOTE);
pktseq > seq and pktseq < seq + Quesize(Info(confll -

Let new = CreateCon(ConAddress(con),
Createques(LocQue(ConQues(con))),

add(pktseq,Data(pkt),
RemQue(ConQues(con))),

Info(con));
exit (new)

endoroc.

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

remove data:
if the last transmission was successful then the
sequence number must be updated and also the data
element may be removed from the queue.

parameters:
con: SConRef,
: :dat3,
d: Direction

gate:
ds:

exit:
SConRef

- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -

process remove_datatds] (con:SConRef, x:data, d:Direction):
exit(SConRef):

[GetSea(Info(x)) = Succ(LastSent(Info(con),d))I -

let new = CreateCon(ConAddress(con),
ConQues(con),
IncAck( Info(con) ,d) );

exit (new)
endoroc.
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(SNPB service primitives *

(Receives a ConReq from PNB *)
arocess ConReqP [c] (con:SConRef): exit:=

c ?pkt:SNPkc [pkttype(pkt) Is ConReq],
?con':SConRef [con' eq con];

exit
endproc

(Sends a ConReq to SMAB *
process ConReqM [c] (con:SConRef): exit

i(conlpkt) (*Build a ConRea *
c !pkt:SNPkt (*Build a SNPkt *

endproc

(* Receive a Conlnd from SMAB *
process ConlndP (c] (con:SConRef) :exit

c ?okt:SNPkt [pkttype(pkt) Is Conlnd],
?con':SConReE (con' eq con];

exit
endproc

(* Sends a Conlnd to PNB )
process ConlndM [c] (con:SConRef):exit

i(pkct) (*Build a Conlnd *
c !pkt:SNPkt

endproc

(receives a DisReq from PNB *
process DisReqP (c] (con:SConRef) :exit

c ?pkt:SNPkt [pkttype(pkt) Is DisReqi,
?con':SConRef [con' eq con];

endproc

(* Sends a DisReq to SMAB *
process DisReqM (c] (con:SConRef):exit

i(conlpkt); (*Build a DisReg *
c !pkt,-:SNPkt

endp ro c

(receive a ConRes from PNB *
process ConResP [c] (con:SConRef) :exit

c ?pkt:SNPkt (pkttype(pkt) Is ConResi,
?con':SConRef [con' eq con];

endproc
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(Sends a ConRes to SMAB *
process ConResM [c] (con:SConRef):exit

i(conlpkt); (*Build a ConRes *
c !pkt:SNPkt

endproc

(* receive a ConCnf from SMAB *
process ConCnffM [c] (ccn:SConRef) :exit

c ?Tokt:SNPkt [pkttype(pkt) Is ConCnfl,
?con':SConRef (con' eq con];

endproc

(* Sends a ConCnf to PNB *
process ConCnfP [cl (con:SConRef):exit

i(conlpkt); (*Build a ConCnf *
c !okt:SNPkt

endmroc

----------------------------------------------------

(Receives a Data Unit from PNB *)
- process DataReoP Ic] (con:SConRef) :exit (Data)

c ?pkt:SNPktl fpkttype(pkt) Is DataReqi,
?con':SConRef [con' eq con];

exit(Data(pkt))
endproc

(* Sends a Data Unit to SMAB *
process DataReqM [c] (con:SConRef, data:Data): exit

i(con,datalpkt) (*Build a DataReq *
c !pkt:SNPkt (*Build a SNPkt *

endproc

(* Receive a Data Unit from SMAB *
process DatalndP [~ci (con:SConRef) :exit (Data)

c ?pkt:SNPkt [pkttype(pkt) Is Datatnd],
?con':SConRef (con' eq con];

exit(Data(pkt))
endproc

- (* Sends a Data Unit to PNB 4

process DatalndM [c] (con:SConRef, data:Data):exit=
i(datalpkt) (*Build a Datalnd 4

c !pkt:SNPkt
endproc

(* receives a AckReq from PNB 4

process AckReqP [c] (con:SConRef) :exit
c ?pkt:S3NPkt [pkttype(pkt) Is AckReq],
?con':SConRef (con' eq con];

endproc
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(* Sends a AckReq to SMAB *)
process AckReqM [c] (con:SConRef):exit :

i(conlpkt); (* Build a AckReq *)
c !pkt:SNPkt

endproc

(* receive a AckInd from SMAB *)
process Ack~ndM [cl (con:SConRef) :exit

c ?pkt:SNPkt [pkttype(pkt) Is Acklndi,
?con':SConRef [con' eq con];

endproc

(* Sends a AckInd to PNB *)
process AcklndP (c] (con:SConRef):exit

i(conlpkt); (* Build a AckInd *)
c !pkt:SNPkt

endproc

endproc (* SNPBStart *)

2.2 PNB specification

The protocol negotiation can be subclassified as either
static or dynamic negotiation. The static negotiation
is fundamental negotiation which is processed during the
gateway initialization step. It can not be altered
during the communication of individual communication
session. By that the static negotiation will be
performed with the each subnetwork's information which
are exported from each SNPBs during gateway
initialization step.

If the static negotiation terminates successfully then
the two subnetworks can communicates without any
degraded functionality. If the minor fixes are required
then the two subnetworks will be interoperable with
minor functional limitation during its operation.
However, if the result is failure then the gateway will
be halt and no further operations are possible.

The second class of negotiation, which is identified as
a dynamic negotiation, is a connection level
negotiation. Which would be applied by the connection
entities.

The module structure is quite similar to the SNPB in
various aspects.
First of all, the PNB is decomposed with the four
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separate blocks: two blocks which are responsible to
communicate with SNPBs on each side; one which maintains
the connection reference information; and one which is
responsible for the protocol negotiation and service
interface between chose two subnetworks.

------------------------------------------------------- )

2.2.1 'Type definitions

type PConRef is Data, SConRef with
sorts PConRef, Side, BufState

opns PO: ->PConRef

A: ->Side

B: ->Side

Full: ->BufState

Empty: ->BufState

CreatePcon: SConRef, SConRef -> PConRef
Con: PConRef,Side ->SConRef

Con: PConRef,Side ->SConRef

Put: PConRef,Data, Side -> PConRef
Get: PConRef,Side ->Data

eqns forall c:PConRef, si, s2:SConRef, d:Data, x:Side

ofsort SconRef
Con(CreatePCon(sl, s2), A) = si
Con(CreatePCon(sl, s2), B) = s2
StateBuf(Put(c,d,x), x) = Full
StateBuf(Get(c,x),x) =Empty

Get(Put(c,d,x),x) = d
Get(CreatePCon(sl,s2),x) = DO
Get(Get(c,x),x) = DO

end type

type PConList is PConRef with

sort PConList

opns
PLO: ->PConRef

GetCon: SConRef, PConList ->PConRef

Addcon: PConRef, PConList ->PConList

Restcons: PConRef, PConList ->PConList

-IsIn_ : PConRef, PConList ->Boolean
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_IsNotIn : PConRef, PConList -> Boolean

eqns forall p r t:PConRef, s sl s2:SConRef, c:PConList
ofsort PConList
Restcon(r, PLO) = 20
Restcon(r,Addcon(r,c)) = cons

t neq p =>
Restcon(r,Addcon(p,c)) = Addcon(p, Restcon(r,c))

Addcon(r, Addcon(t, c)) = Addcon(t, Addcon(r,c))
r eq t =>
Addcon(r, Addcon(t, c)) = Addcon (r, c)

ofsort PConRef
GetCon(sl, createcons) = PO
GetCon(sl, Addcon(CreatePCon(sl, s2), cons)) =

CreatePCon(sl,s2)
GetCon(s2, Addcon(CreatePCon(sl, s2), cons)) =

CreatePCon(sl,s2)
s neq sl and s neq s2 =>

GetCon(s, Addcon(CreatePCon(sl, s2), cons)) =

GetCon(s, cons)

ofsort Bool
sl IsIn createcons = false
sl IsIn Addcon(CreatePCon(sl, s2),c) = true
s2 IsIn Addcon(CreatePCon(sl, s2),c) = true
s neq sl and s neq s2 =>

s IsIn Addcon(CreatePCon(sl, s2), c)) = r IsIn c
s IsIn c = not(r IsNotIn c)

endtype (* ConList *)

*

2.2.1 Behavior specification of PNB

**

(* -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PNBStart:

PNBStart is a start up routine which is responsible to
initialize its internal structure.

When the first process PNBInit terminates successfully the
PNB can continue the operation. However if the PNBInit
fails to communicate or negotiate with SPNBs then the PNB
will not be activated.

gates:
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pa, pb: communicates with SNPB modules

parameters:
none

exit:
noexi t

process ?NBStart~pa,pbI :noexit :
-* PNBrnit~pa,pb](Ineta, neto, cons)

accept neta:Netinfo, netb:Netinfo, cons:PConList in
PNBijpa,pbl(neta, netb, cons)

where

PNBrnit:
This process performs two major functions: first
it will receives the subnetwork information from SNPBs;

- second it will perform static negotiation.

The internal functions of the static negotiation,
'InteroperableoY, are not defined at this moment.

gates:
pa, pb: communicates with SNPB modules

parameters:
none

exit:
neta, netb: Subnetwork Information
cons: Connection reference list

process PNBInit~pa,pb]: exit(SNetlnfo, SNetlnfo, PConList):=
pa ?neta:SNetlnfo, pb ?netb:SNetlnfo;
i(jcons) (*Create connection reference list *

[Interoperable(neta, netb) = false] -> stop

(Interoperable(neta, netb)J -

exit(neta, netb, cons)
endproc

PNB:
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gates:
pa,pb: communicates with SNPB
ga,gb,ds: internal gates

parameters:
infa :SNet Info,
infb:SNetlnfo,
cons: SConList

exit:
noexit

process PNBfipa,pb](infa, infb:SNetlnfo, cons:PConList):
noexit

hide ga, gb,ds in
PNBConilandler fds] (info, cons)
I (ds] I

PNBlnterface(pa,ga,dsl (infa, A)-
I ~gaI I

PNBProtocol(ga,gb,ds] (infa, infb)
Igb1l

PNBlnterfaceilpb,gb,ds] (infb, B)
endproc (* PNB *)

PNBInter faces:

gates:
a: communicates with SNPB
b: filwith PNBProtoco. (internal gate)
ds: filwith PNBConHandler (internal gaet)

parameters:
info: Net Info

exit:
noexit
--------------------------------------------------

process PNBlnterface~a,b,dsj (info:SNetlnfo, S:Side)
:exit

a ?pkt:PNPkt, ?acon:SConRef, ds !acon, !S;
ds ?pcon;
b !pkt, !pcon;
exit

b ?pkt:PNPkt, ?pcon:PConRef;-
[S = A] ->

a !pkt, !Con(pcon, A);
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(S = B] -

a !pkt, !Con(pcon, B);
exit

PNBlnterface[a,b,ds](info, S)
endporc (* PNBrnterface *

*-----------------------------------------------------------------------------------

PNBCon~andler:

gates:
ds: communicates with other processes in PNB

(internal gate)

oarameters:
;nfa: SNetInfo,
infb: SNet rnfo,
cons: PConList

exit:
noexit

process PNBConHandlertdsl (infa, infb:SNetinfo,
cons:PConList) :exit

ds ? con:PConRef, S:Side;
con IrsIn cons] ->

ds !Getcon(con,cons);

con tsNottn cons] -

[Side = A] ->
let pcon = createcon(acon, SO)

[Side = B]I-
let pcon = cr-eatecon(SO, con);

let cons = Addcon(pcon, cons);
ds !pcon;

(ds ?pcon:PconRef, ?remove:Command; (*Remove ConRef *
let cons = RestCon(pcon, cons);

ds, ?pcon:PconRef, ?new:PConRef; U*tpdate ConRef *
let cons = AddCon(new, RestCon(pcon, cons));

PNBConHandler1ds] (infa, infb, cons)

endporc (* PNBConHandler *
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*

PNBProtocol:

gates:
a: communicates with SNPB A
b: $fit with SNPB B
ds: communicates with PNBConHandler

(internal gaet)

parameters:
infa:SNetInfo,
infb:SNetInfo

exit:
noexit

(* Main body of PNB *)
PNBProtocol (a,b,ds] (infa, infb: SNetInfo) exit

choice con:PConRef [I =>

(* REQUEST FROM SIDE A *)
[nettype(infa) = connectionoriented] ->

ConReq(a](con);
Initial Negotation(infa, infb, con, A Iresult, con');
[result = success] =>

([nettype(infb) = connection-oriented] ->

ConInd[b](con');
WAITCONFIRM(a,b,ds](infa, infb, con',A);exit

[I
[nettype(infb) = connection less] ->

DataTransfer(a,b,ds](infa, infb, con')

[result = fail] =>
Dislnd[a](con');
ds !con', !'remove;exit

[I
[nettype(infa) = connectionless] ->

DataReq(a](con Ipkt);
Put(con, Data(pkt), A);
Initial Negotation(infa, infb, con, Alresult, con');
[result = success] =>

([nettype(infb) = connectionoriented] ->

ConResb](con');
WAIT CONFIRM [a,b,ds](infa, infb, con',A);
exit

H1
(nettype(infb) = connectionless] ->
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DataTransfer [a,0ds(infa, infb, con');exit

[result = fail] =>
ds !con',!remove;exit

(REQUEST FROM SIDE B ~
Inettype~infb) = connection-oriented] -

Con.Req[b](con I pkt);
:ni:ialNegota'fion(infb, mnfa, con, BIresult, con');
!result = success] =>

([nettype(infa) = connection-oriented] -

Conlndlah con' ;
WAITCONFIRM [b,aJ(infb, infa, con' ,B);exit

[nettvpe(infa) = connection less] ->
DataTransferka,b~ds]infa, infb, con');exit

[result =fail] =>
Disind[a] (con';
ds !con',!remove;exit

nertype(infb] =connection less] -

Dataneq~bj(con Jpkt );
?uticon, Data(pkt), B);
InitialNegotation(infa, iNb, con, BIresult, con');
[result = success] =>

([nettype(infa) = connection-oriented])-
ConRes a] (con' );
WAITCONFIRM [a,b,ds](infb, infa, con');exit

[nettype(infa) = connection -less] -

DataTransferlja,b,ds](infa, infb, con');exit

[result = fail] =>
ds !con',!'remove;exit

PNBProtocol[a,b,dsl (infa, infb)

endproc (* PNBProtocol *

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

WAITCONFIRM:

gates:
a: communicates with SNPB A

b: with SNPB B
ds: communicates with PNBConHandler

(internal gate)
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parameters:
infa:SNetInfo,
infb:SNetInfo,
cons:PConList

exit:
noexit

process WAITCONFIRM [a,b,ds] (infa, infb: SNetInfo,
con:PConRef, S:Side):=

ConResb] (con Icon');
SecondNegotiation(infa, infb, con'Iresult, con);

Lresult = success] ->

ConCnf[a] (con);
DataTransfer(a,b,ds](infa, infb, con');

[]
[result = fail] ->

(nettype(infa) = connectionoriented] ->
Disind(al(con);
ds !con, !'remove;exit

[nettype(infa) = connectionless] ->
ds !con, !'remove;exit

ConRes[a] (con I con');
SecondNegotiation(infb, infa, con'Iresult, con);

[result = success] ->

ConCnf(b] (con);
DataTransferla,b,ds](infa, infb, con);

(result = fail] ->

[nettype(infb) = connectionoriented] ->

DisInd[b](con);
ds !con, !'remove;exit

[nettype(infb) = connection less] ->

ds !con, !'remove;exit

endproc. (* WAIT-CONFIRM *)

DATA TRANSFER:
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gates:
a: communicates with SNPB A

b: with SNPB B
ds: communicates with other processes in PNB

(internal gaet)

parameters:
infaetinfo,

infb: SNet nfo,
- con:PConRef

exit:
none

process DataTransfer [a,b,dsl (infa infb:SNetlnfo,
con:PConRef): exit

(BufState(con,A) = Empty] -

DataReq~aj (conjpkt);
Put(con, Data(pkt), A);
Ackind~a] (con)

[BufState(con,B) = Empty] -

DataReq[b] (conlpkt);
Put(con, Data(pkt), B);

[BufState(con,A) =Full] ->

DataindI~bi(con, Get(con,A));

- (BufState(con,B) = Full] -

Datalndtal(con, Get(con,B));

Dis~eq[a] (con);
[BufState(con,A) = Full] -

Datand~b1(con, Get(con,A));
[nettypetrinb) = connection-oriented] -

Disndlb] (con);
ds Wcon, Premovemeit,

Dis~eqjb] (con);
[BufState(con,B) =Full] -

DataInd~a](con, Get(con,B));
[nettype(infa) = connection-oriented] -

Disndla] (con);
ds ncon, Premovenexit

endproc.

*-------------------------------------------

process tnitial_Negotation(infa, infb:Netlnfo, con:PConRef,
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S:Side): exit(Bool,ConRef)
i:infa, infb, con,Siresult,con');
exit(result, con')

endproc

process SecorndNegotiation(infa, infb:Netlnfo, con:PConRef
S:Side): exit(Bool,ConRef)

i:(infa, infb, con,Slresult,con');
exittresult, con')

endproc

(PNB service primitives *)

process ConReq [cl (con:PConRef) exit(PNPkt, PConReq):=
c ?pkt:PNPkt (pkttype(pkt) Is ConReq], ?con:PConRef;
exit(pkt, con)

endproc

process Conlnd [c) (con:PConRef)
let x = GetConlnd(con);
clx Wcon; exit

endproc

process ConRes Ccd (con:PConRef) exit(PConRef):
c ?pkt:PNPkt fpkttype(pkt) Is ConRes], ?con:PConRef;
exit (con)

endproc

process ConCnf (c] (con:ConRef)
let x =GetConCnf(con);
clx Wcon; exit

endproc

process DisReq (c] (con:PConRef)
c ?pkt:PNPkt (pkttype(pkt) Is DisReqi ?con:ConRef; exit

endproc

process Dislnd (c] (con:PConRef)
let x = GetDislnd(con);
clx !con;exit

endproc

This group of processes provides a data tranfer related
PNB service primitives.
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process DataReqaij(con:PConRef): exit(PNPkt, PConRef):
a ?pkt:PNPkt pkttype(pkc) Is DataReq], ?con:PConRef;
b !pkt, ! BCon(con);exit

endorozc

process AckReq~cj(ccn:PConRef): exit-(PNPkt, PConRef)
a ?Pkl":PNPkt [ok ttype(pkt) Is AckReq], ?con:PConRef;
b tnkt, tBCon(con);exit

enduroc

process Datandic](con:PConRef, pkt:PNPkt)
c !pkt:PNPkt"; exit

endproc

process Acklnd~c](con:PConRef, pkt:PNPkt)
c !pkt:PNPkt; exit

endproc

endproc (*PNB Start *

endspec. (*Generic Gateway *


